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Abstract

Two new approaches for the multivariate analysis of fish
growth in aquaculture are presented: The first of these two ap-
proaches, the “extended Bayley plot” is a multiple regression
expansion of an existing bivariate method, which permits the
inclusion of environmental and treatment variables when esti-
mating the parameters L and K of the von Bertalanfly growth
function, given precise measurements of fish length and weight
at different ages. The derived regression model which must be
based on a Type II, or “functional” regression, can be used to
predict fish growth uader anticipated conditions and thus iden.
tify appropriate farm management options. The differences of
this method with the related “extended Gulland-and-Holt plot”
are discussed. The second approach pertains to the application
of “path” (or “causal®) analysis in the context of aquaculture.
Causal path diagrams, based on either extended “Bayley” or
extended “Gulland-and-Holt™ plots, can be used to put into a
rigorous framework hypothesized networks of interacting vari-
ables controlling, for example, tilapia growth in ponds. Both
methods were applied to a dataset based on pond growth ex-
periments with Nile tilapia Oreochromis ailoticus, conducted in
Muiloz, Philippines.

Introduction

Two new approaches for the multivariate
analysis of pond growth experiments are presented
here:

() the multivariate extension of the Bayley

plot, a method for estimating the param-
eters L_ and K of the von Bertalanffy
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growth function (VBGF) for length and
weight growth data, and

(i) the application of “path analysis” (also

known as “causal analysis”) to data from
aquaculture experiments.

A rationale for the application of multivariate
methods in aquaculture is given in Prein et al.
(this vol.) and this topic need not be discussed
here, where we shall limit ourselves to presenting
new variants of existing techniques. It is our hope
that these new variants will serve in highlighting
those aspects of aquaculture datasets which tradi-
tional methods, and/or the methods discussed in
the other contributions included in this volume,
may fail to highlight.

We shall first discuss the theory behind the
proposed new approach, then apply them to a
dataset derived from growth experiments on Nile
tilapia Oreochromis niloticus, conducted in Muiioz,
Philippines from August 1979 to June 1981, and
also used and documented by Prein (this vol.).

The Simple and Extended Bayley Plots
The Bivariate Model

The method to be discussed was proposed by
Bayley (1977) as an approach for the estimation of
the parameters L_ and K of the VBGF via a new
linearizing transformation of this nonlinear func-
tion. The VBGF has for length the form

L, = L_(1-exp-(K(t-ty) . §)

where
L, is the length at age t,

L. the mean length the fish would reach if
they were to grow indefinitely;

K the instantaneous rate at which L_ is ap-
proached; and \

t, fixes the origin on the time axis, and will

be ignored in this contribution.
Given a length-weight relationship of the form

W = v.Lm 00.2)
the VBGF for weight becomes
W" = W_(l-eXD'K(t'to))m 0008)



where

W, is the predicted weight at age t,

W_ the weight corresponding to L_, and the

other parameters are as defined above.

Bayley (1977) when presenting his new
method pointed out that instantaneous growth
rate in weight, G, is defined by the differential
equation:

d(InW)
dt

G oeed)

which is approximated, for short time intervals, by
the difference equation:

InW, - InW,

b-b

Given growth processes correctly described by
the VBGF, Fig. 1 depicts the exponential decrease
of the instantaneous weight growth rate with age,
and the reciprocal of length vs. time. By incorpo-
rating a length-weight relationship into equation
(4), the process of growth can be formulated in

G
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terms of weight on one side and length on the
other. For short intervals this growth relationship
takes the form:

InW, - InW, Inv + mInL, - Inv - minL,
t-t t, - t, .8)
or
InW, - InW, m(nL, - InL,)
t, -t t -t "))

This, in terms of a difference equation, takes the
form:

m AL

— 0 mp—

L at

A(InW)

At «.8)

and in terms of a differential equation, the form;

Instantaneous growth rate (d inW/dt)
Reciprocal of length (L-')

d(InW) d(InL)
_ =1m_:
dt dt 9)
B

Fig. 1. Schematic representation of basic
processes considered in new method
(extended Bayley plot). A) The non-linear
decrease of instantaneous growth rate in

Age

Instantaneous growthrate {8 Inw/At)
Instantaneous growth rate (dInW/dt)

Reciprocal of length (L)

weight with age; B) The nonlinear
decrease of the reciprocal of length with
age; C) The Bayley plot. The relationship
between instantaneous rate of growth in
weight and the reciprocal of length can be
described by a linear relationship, starting
from the upper right end of the line for
small fish, down towards the intercept
with the abscissa for large fish; D) The
Bayley plot for seasonally oscillating
growth, which (in contrast to the Gulland-
and-Holt plot, and assuming no shrinkage
in ltength) permits negative values (i.e. loss
of weight; hatched area) for the dependent
variable. The residual variance around the
regression line can be explained by
including seasonally oscillating variables
into a multiple regression.

Reciprocal of tength (L")
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Rearranged, this gives
d(InW) m dL

dt L dt

...10)

Equation (8) is equal to the instantaneous
growth rate G. By combining equations (4) and
(8), instantaneous growth rate can be reexpressed
in terms of the parameters L_ and K of the VBGF
(equation 1), i.e.,

d(InW) L,
=mK. —
dt L-1 «.11)
or:
InW, - InW,
——— =-mK + mKL_(I/L.)  ..12)

-t

which has the form of a linear regression, where
the expression on the left hand side of the equa-
tion is the dependent variable (y), L is the inde-
pendent variable, -mK is the intercept (a) and
mKL_ is the slope (b).

Therefore

A(InW)Y/At = a+b(L!) «.13)

Thus, the parameters of the VBGF can be es-
timated from successive measurements of length
and weight and the parameter m of equation (2),
from -

K = -a/m «148)

and L_=Dbla «.14b)
The relationship between instantaneous growth
rate and the reciprocal of length is illustrated in
Fig. 1C. Bayley (1977), who developed this
method, gives an approach for estimating the vari-
ance of K. Estimating the variance of L_ can be
done according to Snedecor and Cochran (1980).

The Multivariate Extension

The method discussed above relies on the rela-
tionship between growth rate in weight and the
reciprocal of the average length during a given
growth increment. Of these two, the variable
showing the greatest amount of variance as a re-

sult of environmental effects will be growth rate
in weight, which can, at times, have negative val-
ues (Fig. 1D). When plotting data from different
experiments, with many different treatments, the
variance around the regression line can be attrib-
uted, at least in large part, to environmental and
treatment factors. To include these factors explic-
itly into one’s analysis, equation (13) can be ex-
tended into a multiple linear regression equation
of the form:

dlnW

= a+b (VL) + bX, + ... + b X
dt
...15)

where a = b;=-m/k and whose pa-ameters can be
obtained through multiple regression analysis. The
VBGF parameter L and K are obtained from

L.=b/(-a + bX, + ... + b X)) «.16)

and, for K, from -a/m.

The method embodied in equation (15) relates
growth increments over short time periods to envi-
ronmental or treatment effects measured during
and averaged for these time intervals (Table 1).
This is similar to the ‘extended Gulland-and-Holt
plot’ (Pauly et al., this vol.), but requires that both
the length and the weight of individual fish be
recorded at the sampling events.

As for the “extended Gulland-and-Holt plot”
the data requirements are therefore:

1. A cultured population of aquatic organisms
must be sampled in length and weight at
regular, short intervals. For shorter intervals,
growth in length will be difficult to detect and
sampling stress may result. For longer inter-
vals information will be lost. The sample sizes
should cover a representative portion of the
population. The data for each individual organ-
ism should be recorded;

2. All environmental and treatment variables of
interest should be measured at regular inter-
vals with the appropriate frequency to obtain
representative values for these intervals;

3. In the design of factorial experiments for
analysis by these methods, a wide range of
values of each variable should be covered:

a) from small to large organisms, so that a

representative growth model based on the
VBGF can be fitted correctly;
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Table 1. Extended Bayley method: data table organised sccording to experiment duration and individual

measurements during intervals.

BIOMETRICS ENVIRONMENT
DATE WEIGHTS LENGTHS VARIABLE-1 VARIABLE-2
STOCKING t — W1 — — L1 — -T- —_
xi _ i _
at L AL : Xi X2
xi xi
1st SAMPLING 2 — W2 — f- L2~ —te —
- xi - -
At L AL : X1 X2
x
2nd SAMPLING 3 — W3§— — L3 £ —t
HARVEST tn Wn I- Ln—, .L J_

b) from low to high values of environmental
and treatment variables, including an ad-
equate number of zero-treatment (control)
experiments, so that the regression can
detect environmental and other effects on
growth,

From the sampling intervals, mean values are
calculated for all variables measured during the
interval, together with the time interval in days,
the instantaneous growth rate in weight and the
reciprocal of the average length (Table 1). The
data of all treatments and ponds are then organ-
ized in a data matrix ready to be used for multi-
ple regression analysis. For the first pond and
treatment the interval numbers are also the case
numbers (Table 2). With this data matrix a multi-
ple regression analysis can be performed.

Use of Type II Regression

Since the extension of the Bayley plot to a
multivariate method was originally proposed
(Prein 1990), the tendency of this method to over-
estimate L_ and underestimate K (see Prein 1990,
section 3.82 and Fig. 4.6) has led us to reexamine
the contention of Bayley (1977) that a Type I re-
gression is appropriate for use in conjunction with
his method, and by extension to equation (15).

Recall that fitting a Type I, predictive regres-
" sion involves minimizing the squares of the verti-
cal distance between the regression line and the

observations. Thus, when plotting Y on X, it must
be assumed that the X values are estimated (more
or less) without error, (almost) all measurement
errors being associated to Type I regression.
Therefore, Type I (or arithmetic mean = AM) re-
gressions, i.e., those taught in most statistics
courses and built into most statistical computer
packages, tend to have slopes whose values de-
cline when the variance of the data points in-
crease - a result of the way fitting is done.

Aquaculture growth data obtained as described
above will tend to be “messy”, with a large amount
of unexplained variance remaining, whatever the
method of fitting. Hence, the slope will tend to be
strongly biased downward.

In a Bayley plot (see Fig. 1C) this will have
the effect of underestimating the value of the in-
tercept of the regression line with the X axis G.e.,
L) - and hence to overestimate L_ (see equation
14b).

One straightforward approach to reducing this
bias is to use a Type II or functional regression.
Such regression, also called geometric mean (GM)
regression, may be seen as the geometric mean
(hence the name) of two regressions, one with Y
plotted against X, the other with X plotted against
Y (each still minimizing the square of the vertical
distance between line and residuals). The param-
eters (a’, b’) of a Type II can be obtained from
those of a Type I regression (a,b)
via
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Table 2. Extended Bayley method: data matrix organised in final form appropriate for multiple regression

analysis.
CASE Y Xi X2 Xn
1 AlnWiat 1L VAR1 VARn
2 L] - - -
; ; ; , :
I‘l - - L] -
C )
Y
mean values of environmental
variables in fish growth intervals.
b’ - h/l o l “0178)
, S N [_but.J
and a = YbX «..17b) ?{ by ) \ box

where Irl is the absolute value of the correlation

coefficient linking Y and X.

Thus, a Bayley plot fitted with a Type II re-
gression will always produce estimates of L_ lower
than a Bayley plot fitted with a Type I regression,
and the difference between the two estimates of
L_ will increase as Ir! decreases. Applying these
considerations to equation (15), i.e., to the
multivariate extension of the Bayley plot is not
straightforward, however, because an equation
analogous to (17a) is not available.

The job can be done, however, by estimating
the parameters of a number of multiple regression
models, then computing their geometric mean.

This is best explained using an example in-
volving three variables: Y the real dependent vari-
able, and two independent variables, X and Z. In
this case:

1) estimate the slopes and intercepts of three
equations (i, j, k) making each of the variables
act in turn as the “dependent” variable:

Y = a;+b, X+b,Z ooi)

X aj+b1jY+b2jZ ()]

Z = a+b, X+b, Y ws(k)
ii) solve equations (j) and k) for Y, i.e., for the

real dependent variable:

Y = -(a/b,)+(1/b,,)X-(b,/b,)Z

Y = '(aﬁjzk)'(bujbzk)x*ﬁ/l’zk)z
ili) estimate geometric mean values of b, and b,

(ie., b, and b)) via

and b'y= J by; [%} +(1bgk)
)

iv) estimate the corresponding intercept (a’), in
analogy to equation (17b) from

8’ = Y-(b X+b',Z) os18)
[The extension of this approach to more variables,
although tedious, is quite straightforward, but is
not shown here; see Pauly (1986) for an example
involving five variables).

Using the a’ and b, values in equation (15)
instead of a and b, values will lead to less biased
estimates of L and K, as will be shown below.

Methods to estimate the variance of Type II
multiple regression parameter estimates are not
known to us; indeed no such methods appear to
exist even for the bivariate case (Ricker 1975).

Path Analysis
History and Theory

The method of path analysis, also called causal
analysis, was developed by the geneticist Sewall
Wright (1921, 1923, 1934) for the analysis and in-
terpretation of effects of heredity (Land 1969; Li
1975). Later applications were made in genetics



(Cloninger 1980), econometrics (Backhaus et al.
1989), political sciences (Sanders 1980), social sci-
ences (Weede 1970; Boyle 1970; Kang and Seneta
1980; Blalock 1985a, 1985b), psychology
(Brandstidter 1976; Brandstidter and Bernitzke
1976), agriculture (Dérfel and Neumann 1973;
Rasch 1983), marine biology (Schwinghamer 1983)
and fisheries biology (Davidson et al. 1943; Coelho
and Rosenberg 1984; Robinson and Doyle 1988).
Eknath and Doyle (1985) used the LISREL VI ap-
proach to causal analysis (Joreskog and Sérbom
1984) to estimate unobserved variables from scale
data of Indian carp. Here only a short overview of
the method can be presented, partly adapted from
Prein (1985). For an extensive description of tech-
nical procedures see Turner and Stevens (1959),
Dérfel (1972a, 1972b), Kim and Kohout (1975), Li
(1975), Heise (1969, 1975), Draper and Smith
(1981), Backhaus et al. (1989), Joreskog and
Strbom (1984).

General Concept

The general approach to the application of
path analysis is:

1. The researcher has to formulate an a priori
causal hypothesis, which requires that the ex-
amined system is adequately understood. Also
the researcher must have a hypothesis of the
interactions of the variables in the system
based on knowledge and reasoning. Mostly,
several different hypotheses are formulated
and tested in an interactive process over sev-
eral runs.

2. With path analysis one can examine, but not
test, a causal hypothesis.

3. Analysis is done by:

a) calculating a multiple regression equation,
and then

b) graphically and visually analyzing a path
diagram.

Requirements

As in multiple regression (on which path
analysis is based), the relationships among the
variables must be linear. Thus, nonlinear proc-
esses must be linearized. In the present case, the
Bayley plot served for linearization of the growth
process. Similarly, the Gulland-and-Holt plot may
serve as a basis for growth curve linearization and
use with path analysis, as demonstrated in Prein
(this vol.). In path analysis the variables must be
used in a standardized form.

37
Standardization of Variables

Standardization of all variables in the analysis
is done by subtracting the mean of each variable
from each individual value and dividing by its
standard deviation (Li 1975; Heise 1975; Backhaus
et al. 1989):

X-X

SV, =

SD., ..19)

Through this procedure the mean of each
standardized variable becomes zero and its stand-
ard deviation becomes equal to unity. Therefore
the effects of different factors can be compared di-
rectly between all independent variables in terms
of their relative strength. With these variables
multiple regression equations are calculated.

The regression coefficients of standardized
variables are called beta coefficients (Blalock
1972). The beta coefficients (also termed ‘beta
weights’) can also be determined directly from the
regression coefficients (Norusis 1985) using:

SD.,

beta, = b

S.D.y «.20)
where beta, is the beta coefficient of the independ-
ent variable x, b, is the regression coefficient of
the independent variable x, S.D., is the standard
deviation of the independent variable x, and S.D.
is the standard deviation of the dependent vari-
able,

The independent variables are termed “cause”
variables, the dependent variable is termed “effect”
variable:

“cause” variables —> “effect” variable
(x,, Xy, X5...X,) (y)

Path Diagrams

The basis of path analysis is the design of a
path diagram and the insertion of the beta coeffi-
cients (now termed path coefficients) at the respec-
tive paths (arrows) in the diagram. From a two-
variable example:

y = a+bX +bX,

the resulting path diagram is shown in Fig. 2.

21)
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u

8)  The amount of variance explained by
the model for any dependent variable is the
sum of all complete circuits among the inde-
pendent variables which affect the dependent
variable. Alternatively, this value can be de-
fined as one minus the square of the residual
coefficient.”

Since path analysis is based on multiple

u regression, the application of this method to

the “extended Gulland-and-Holt” method and
“extended Bayley” method can be expected to
generate useful insights. Here, path analysis
is demonstrated in combination with the ex-
tended Bayley plot. The methods and analy-

Fig. 2. Theoretical path diagram for a two-variable example. P, and Py =
path coefficients (Beta coefficients of X, and X,); Cy,2 = the correlation
between X; and X,; U = residual effect; u = amount of unexplained

variance which is 1-R2.

Examination of the path diagram reveals the
direction and strength of influences among vari-
ables. By following the paths in several steps over
different variables, combined effects can be de-
scribed. These combined effects are called ‘com-
pound paths’. The coefficients have no meaning in
an absolute sense. Their relative comparison
though allows for identification of the strength of
direct and indirect influences. These causal rela-
tions and interrelations may be localized and de-
scribed through path analysis. There are several
rules for the interpretation of path diagrams which
were summarized by Coelho and Rosenberg (1984)
as follows:

“1) Cause-and-effect relationships are unidirec-
tional and are shown by arrows with heads
pointing at the dependent variable;

All hypothesized factors (predictors) which con-
tribute to the variation of the dependent
variable(s) are included in the diagram;
Direct paths are the direct connection between
two variables;

Compound paths with component paths are
the result of several individual paths;

The overall coefficient for a compound path is
the product of the coefficients of its component
paths;

The correlation between two variables is the
sum of all paths by which they are connected.
Correlations which imply no causality are
shown with double headed arrows;

The residual coefficient (1 - R?), which is a
composite of unknown sources of variation, is
indicated by a simple line;

2)

13)
4)
5)

6)

7

ses presented herein were partly included in
Prein (1985, 1990). The results will be com-
pared with those of analysis based on the ex-
tended Gulland-and-Holt plot (Prein, this
vol.).

Applications of the New Approaches
The Data Used

Data from the ICLARM/CLSU experiments
(Hopkins and Cruz 1982) contained some record-
ings of individual lengths and weights of Nile tila-
pia during the sampling events (Prein, this vol.).
Together with the length/weight relationship de-
rived there, these were applied to test the new
method proposed above using the data in the file
PHILSAMP.WKI1 (see Appendix II). The results of
the analysis with the extended Bayley methed are
compared with those produced with the extended
Gulland-and-Holt method (Prein, this vol.).

The usefulness of predictive multiple regres-
sion models for production planning and farm
management has been pointed out (Prein, this
vol.), which goes beyond the purpose of analytical
identification and quantification of governing ef-
fects.

Testing of the Model

The analysis performed here was based on the
same randomly sampled part of the dataset which
was used in the extended Gulland-and-Holt
method. To conform with the procedures of statis-
tical model building, the derived equation was
then tested on the unused, remaining part of the
dataset (Prein, this vol.). The obtained set of re-
gression coefficients should not differ significantly
from that initially developed.
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Extended Bayley Analysis 3 o
Y
An ordinary Bayley plot of the entire g
ICLARM-CLSU dataset is given in Fig. 3. With S oo
the sample dataset of 200 cases, the following g
equation is obtained: =
’g’ 005
AlnWAt = -0.03947 + 0.8678 (MLY)  ..22) s
3
with n = 184, 1* = 0.628, SEE = 0.0178, P < 0.001, g °
K = 0.0121249% and L_ = 22.0 em 5
£ -o0skt . A L L /
An extended Bayley plot employing the same ° 003 oo os 020 02
set of variables as in the extended Gulland-and- Reclprocal of maan length (cm)

Holt plot produces the following regression equa- - —
Fig. 8. Bayley plot of Nile tilapia grown in ICLARM-CLSU

tion: experiments at Musioz, Philippines, in 1978-1981, n = 616. See text
for regression equation. Note heteroskedasticity as discussed in

mean  range text.

AlnWAt =
0.79807 (mean length)? 0.07 0.191.0
41151 . 104  manure input kg-ha'l-day! 73 0-221
<0.03338 SQRT stocking COMPARISON OF BOTH METHODS

density kg-m-? 0.36 0.08-0.8
+1.797 . 10%  pond area m? 811 400-1000 The extended Gulland-and-Holt method and

. 105 iation ly-day? . .
3‘_&78%1 10 soler radiation ly-day 564 133-633 the extended Bayley method performed similarly
..28) in identifying variables which are influential on

with n = 184, R? = 0.675, SEE = 0.0168, P <
0.001, K = 0.020992y and L_ = 35.0 (22.46 to
88.01) em, where SQRT is the square root.

The percentage of total explained variation
represented by each of the independent variables,
together with their 95% confidence limits is:

lower upper
(mean length)! = 851 % 0.63851 0.95962
manure input = 84% 2.508 - 108 2.051 - 104
stocking density = 28 % -0.06233 -4.428 - 107
pond area = 65% 7.907 . 10°¢ 2.808 - 108
solar radiation = 71 % 2.785 - 10 9.011 - 108
CONSTANT -0.09468 -0.04184

TEST OF THE MODEL

As in the test of the extended Gulland-and-
Holt equation described in Prein (this vol.), the
remaining part of the divided dataset was used to
compute the regression equation for the extended
Bayley plot. The coefficients of the derived equa-
tion were not significantly different (at the 95%
level) from the coefficients determined with the
sample dataset. Further, the signs of the inde-
pendent variables were the same.

fish growth. The extended Bayley method resulted
in a higher R? value (i.e., a higher amount of ex-
plained variance) than the extended Gulland-and-
Holt method.

With the dataset used here, both methods
showed the same sensitivity and identified the
same set of variables as significant predictors of
Nile tilapia growth rate. The sign of the variables
was the same, except for the reciprocal of mean
length, which was positive compared to
untransformed mean length. Regarding the contri-
bution of the auxiliary variables to the total
amount of explained variance, their relative
strength is very similar in both methods.

In the tests on the part of the dataset not
used for model derivation, both methods showed
the same stability and precision. The estimated
models from both parts of the dataset were not
significantly different.

The coefficient of determination was consider-
ably higher for the equation determined with the
extended Bayley method (R2 = 0.66) than for the
extended Gulland-and-Holt method (R2 = 0.40,
Prein, this vol.), based on the same dataset and
the same variables. This is a consequence of the
close relationship between reciprocal length and
weight growth rate. The relative contribution of
the auxiliary variables remained similar.
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In the analyses performed here, some variables
could not be included in the regression models. In
some cases, the independent variables were insig-
nificant, i.e. there was no correlation between
them and the dependent variables. This can result
if the variable in question does not vary in the
dataset (i.e., due to experimental design), or the
variance is not related to growth rate.

In other cases, variables could not be entered
into the regression due to multicollinearity with
other variables. Through disturbing effects, a
highly significant variable already in the equation
may become insignificant when a further, collinear
variable is entered. This leads to the main prob-
lem, and disadvantage, of the methods applied
here. Mean length must be entered as an inde-
pendent variable for the methods to work, since
these are based on the ordinary Gulland-and-Holt
and Bayley plots. Therefore, any variables highly
correlated with mean length in the datasets can-
not be included. Variables which are normally con-
sidered to be important predictors for fish growth
cannot be included if, due to experimental design,
these were not varied according to factorial design
principles. Particularly in the dataset from Dor
station (Prein, this vol.), treatment variables such
as stocking density, manure and pellet input, but
also solar radiation and water temperature were
highly collinear with mean length. In such cases,
the datasets cannot be extensively analyzed with
these two methods, limiting the amount of infor-
mation that can be extracted from them. These
restrictions are due to the rules of multiple regres-
sion. Correlation tables and values of the ‘toler-
ance’ statistic must be checked for compliance with
acceptable limits. Multicollinear variables do not
improve R?, but rather inflate the standard errors
of the regression coefficients (Norusis 1985). Be-
sides this, the ‘parsimony-principle’ of regression
model building should generally be followed, ie.,
fewer variables in a regression model are better,
making it more robust (Weisberg 1980).

Derived Growth Parameters

In the determination of the VBGF growth pa-
rameters K and L_, different values were obtained
with both methods. The ordinary Gulland-and-Holt
Plot results in an estimate of K = 0.00994day!
with lower and upper 95% confidence limits of
0.00773day™ and 0.01215day"!, respectively. The
value for K obtained by the ordinary Bayley

method is 0.01215day?, which is within the limits.
It is therefore not significantly different.

The value for L_ derived with the ordinary
Gulland-and-Holt plot was 25.4 cm with lower and
upper confidence limits of 22.3 and 28.6 cm, re-
spectively. According to Sparre et al. (1989), the
confidence limits for L_ are only approximations.
The value of L_ obtained with the ordinary
Bayley plot is 22 c¢m, which is beyond the lower
limit.

With the extended Gulland-and-Holt method, a
value of K = 0.00652day! was estimated, with
lower and upper confidence limits of 0.00162day!
and 0.01141day’!, respectively. The value of K
computed with the extended Bayley method is
0.0209day"!, which is beyond the upper limit, and
is therefore significantly different.

The values for L_ derived with the extended
Gulland-and-Holt method are 30.8, 23.2 and 38.3
cm, based on the average, minimum and maxi-
mum values of the independent variables, respec-
tively. The lower and upper 95% confidence limits
are 11.3 and 33.5 cm, obtained by inserting the
average values into the lower and upper confi-
dence limits of the regression coefficients. The av-
erage value for L_ calculated with the extended
Bayley plot is 35.0 em, which is beyond the upper
limit.

It should be noted that the dataset for the ex-
tended Bayley method contains an entirely differ-
ent variable, which is also the dependent variable
(weight) and was measured separately on the fish,
Differences in estimation of the equations and the
VBGF growth parameters may be due to this fact.
A more adequate test for the precision of the two
methods is performed when the values of fish
weight for the Bayley method (ordinary and ex-
tended) are computed with a length-weight rela-
tionship. In this case, all differences in the ob-
tained equations and VBGF growth parameters
are attributable to the methods. On the other
hand, if the parameters were not significantly dif-
ferent, this would prove that the differences be-
tween VBGF parameters found above are due to
the fish weights actually measured.

In the sample dataset which was used for the
derivation of the equations described above, Nile
tilapia weights were computed from the measured
lengths with the length-weight relationship. An
ordinary Bayley plot resulted in the following
equation:

AlnWat = -0.03653 + 0.88455 (ML) «.24)



with n = 193, 12 = 0.601, SEE = 0.0170, P < 0.001,
K = 0.0112day?! and L_ = 24.2 cm

The obtained VBGF parameters are not signifi-
cantly different from those estimated with the or-
dinary Gulland-and-Holt plot. A regression analy-
sis run with the extended Bayley method with the
same set of variables as used above produces:

mean, range

AlnWAt =
0.80246 {mean Jength)? 0.07 0.19-1.0
+1.254 - 10+ manure input kghat.d? 78 0-221
-0.03326 SQRT stocking

density kg-m? 0.36 0.08-0.8
+41.718 - 108 pond area m? 811 400-1000
+5.384 . 105 solar radiation ly-day? 864 133-638
-0.06199

«0e25)

" with n = 193, R? = 0.663, SEE = 0.
0.001, K = 0.0190day! and L_ = 25.
83.3).

The estimate of K is beyond the upper limit
and is therefore significantly different. In contrast,
the value for L_ is not significantly different.
Thus, in the present case, the extended Bayley
method produced slightly higher estimates of K
and similar estimates of L_ compared to the ex-
tended Gulland-and-Holt plot.

0158, P <
7(59to

Extended Gulland-and-Holt Method

In a derived equation based on the extended
Gulland-and-Holt method (Pauly et al., this vol.),
all environmental effects are incorporated in the
VBGF parameters K and L_, although to a differ-
ent extent (Prein, this vol.). While a single value
of K is computed for the entire dataset, a separate
value of L_ results for each individual case. There-
fore, the value of K is influenced by the average
environmental and treatment conditions, while L
is highly flexible and responds to changes in the
environmental variables (if these are included as a
variable in the equation).

The method is based entirely on length meas-
urements. If only weights are available, these
have to be transformed with a length-weight rela-
tionship. This procedure though, may lead to
negative values for growth rate, since weight loss
may occur. A loss in length can be nearly ex-
cluded for fish under aquaculture conditions.
Therefore, negative values in a dataset with
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length measurements can be usually identified as
measurement errors. On the other hand, since fish
size is the "instrument” for detecting environmen-
tal and treatment effects, the time interval be-
tween samplings must be long enough for fish size
to respond in form of growth in length. Minor ef-
fects may not be measurable or may be hidden
within the error range of measurement and will
therefore not be detected. Weight of fish is much
more responsive to environmental and treatment
influences and can be regarded as much more sen-
sitive than length, particularly on a short time
scale.

EXTENDED BAYLEY METHOD

For the estimation of K and L_ with the ex-
tended Bayley method, the same as said above
applies here too, with the exception that both also
contain information on the influence of environ-
mental and treatment effects on the relationship
between length and weight. In this method,
weight increments are used as the Snstrument’ to
detect environmental influences on growth. Length
data are also necessary for the method to work,
since the reciprocal of mean length per growth
interval is the first (and obligatory) predictor vari-
able. Both methods used here are applicable to
size increment data collected at unequal time in-
tervals.

The wide ranges for the derived VBGF param-
eters, based on the extended Bayley method, are
due to the bulk weighings in the ICLARM-CLSU
dataset. Individual fish weighings should give
more precise values, which represent better the
true relationship between length and weight.
Based on such data, the extended Bayley method
produces more reasonable VBGF parameters, as
shown by a test vased on a subset of the
ICLARM-CLSU data.

Svirdson (1984) showed that the ordinary
Gulland-and-Holt plot was sensitive to growth
variation in the smaller fish sizes (i.e., in the as-
cending limb of length growth curves). Measure-
ment errors in small fish lead to more biased esti-
mates of K and L_. Both methods presented here
are based on a linearization of a nonlinear func-
tion. The necessary transformations have conse-
quences for parameter estimation (Svirdson 1984).
The Bayley method is based on a ‘strong’ transfor-
mation, leading to a higher value for r2 than the
Gulland-and-Holt plot, when applied to the same
dataset. The average estimates of K and L_ are
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similar in both methods. However, based on the
multiple regression version, the Bayley plot pro-
duces a much wider range of L_ values. Particu-
larly, low growth rates lead to a flattening of the
slope, which produces unrealistically high values
of L_, a result of the reciprocal transformation.
Thus the extended Bayley method may be more
sensitive, but consequently less robust, than the
extended Gulland-and-Holt method.

Unexplained Variance

The amount of total variance in growth rate in
the ICLARM-CLSU dataset which was explained
by the developed regression models was 67% in
the extended Bayley analysis. Although highly sig-
nificant, this indicates that part of the variance in
tilapia growth rate was due to effects which were
not included in the equations. Several reasons may
be responsible for this fact.

In some cases, variables with strong influence
could not be incorporated into the model due to
high correlations with other variables. Their possi-
ble contribution to variance explanation is lost (as
discussed above).

A second possible source of unexplained vari-
ance may be caused by cases in which important
key variables are not measured. For example, in
the presently analyzed datasets, the amount of
natural food available to the fish (e.g., water sam-
ples measured as plankton content, chlorophyll a,
or protein content) was not measured directly in
the ponds in any case. Also, a longer duration of
the low-oxygen periods in the early morning could
possibly outbalance the positive effect of higher
food availability and reduce growth.

A third possibility may lie in the imprecision
and inaccuracy of average values per interval.
Some of the measured parameters are highly vari-
able, such as D.O. or pH. In the present approach,
their average effect on fish growth during a
growth interval is expressed in form of a single,
mean value, based on the available individual
measurements in the interval. If these measure-
ments are not taken frequently and representa-
tively, the averages will not adequately reflect the
true effects. For example, AMDO varies daily, de-
pending on meteorological conditions; two single
measurements during a two-week interval are
thus inadequate. The pH of pond water is often
measured only in the morning, while higher after-
noon values can lead to toxic conditions for the
fish through ammonia conversion from the ionized

to the molecular form (Steinmann and Surbeck
1922; Schaeperclaus 1952; Wuhrmann and Woker
1953; Ball 1967; Sousa et al. 1974; Redner and
Stickney 1979; Alabaster and Lloyd 1980; Chetty
et al. 1980; Spehar et al. 1982). Today, such prob-
lems can be overcome with the application of con-
tinuous measurement of parameters with long-
standing electrodes and dataloggers (Piedrahita et
al, 1987).

A further, considerable source of variance may
be due to errors in determining fish sizes at the
sampling events. In the methods applied here,
growth rate is used as the ‘instrument’ to detect
environmental and treatment effects and is used
as dependent variable in the regression procedure.
Any errors in the determination of average fish
size during sampling procedures will introduce
variance into the growth rate variable. This
amount of variance cannot be accounted for by
any independent variable, which reduces the value
of all the effort invested into their measurement.
Therefore, it should be of highest priority to strive
for the highest possible precision at the sampling
events when designing and performing sampling
procedures in fishponds.

The common method applied to fishpond stud-
ies is to seine a sample of fish from the pond with
a small-meshed net at regular intervals (two to
four weeks). The sample is either bulk-weighed
and counted, or each fish is measured and
weighed individually. Often, sampling of a nonrep-
resentative portion of the pond population may
lead to erroneous estimates. A sample size of 10%
of the pond population is common, but Lovshin
(1984) showed that even larger sample sizes of
20% can have a 20% error. Even large sample
sizes may be biased since tilapia are known to
cause sampling errors during netting operations
through their evasive behavior, which they learn
quickly (Kelly 1957). A further source of sampling
error is nonrepresentative capture performance by
the net, caused by jumping and hiding of the fish
and incorrect net handling by personnel
(Barthelmes 1960; Yashouv 1969). In the case of
tilapia reproduction in ponds, young fish may
cause the size distribution to ‘smear if experiment
durations are long, since young fish can grow
quickly and catch up with the smallest sizes of
the adult stock.

Random variance in fish growth is a factor
leading to the natural size distributions in fish
populations. Reactions of fish populations in differ-
ent ponds may not be the same, when confronted



with the same treatment. Variation in the growth
rates may be due to such effects. In most experi-
ments, ‘zero’ treatment controls are often not per-
formed. Therefore it is not possible to assess to
which extent observed variations are due to treat-
ments or due to natural variability. It is not well
understood as to what extent the size distribution
of a fish population grown under culture condi-
tions is influenced by intrinsic (e.g. genetic or
behavioral), or extrinsic factors (e.g. stocking den-
sity, age, sex, food availability, environmental con-
ditions), or by interactions between them
(Buschkiel 1937; Wohlfarth and Moav 1969;
Wohlfarth 1977; Brett 1979; Nakanishi and
Onozato 1987; Hepher et al. 1989). Only few stud-
ies exist in which these effects have been investi-
gated for fish under aquaculture conditions (Kawa-
moto et al. 1957; Nakamura and Kasahara 1955,
1956, 1957, 1961; Yamagishi 1962, 1969; Yama-
gishi et al. 1988; Yamagishi and Ishioka 1989).

The outlined effects all have consequences for
the derivation of regression models and VBGF pa-
rameters.

Heteroskedasticity

The transformation of the length and weight
variables in the methods used here, and in other
contributions in this volume (Prein; Prein and
Milstein), has consequences for the performance of
the methods. In both the “extended Gulland-and-
Holt” (Pauly et al. this vol.) and “extended Bayley”
plots, the points belonging to the fish of medium
and larger sizes are clustered near the abscissa,
close to L_, and have a small amount of variance.
The points belonging to smaller fish cover nearly
50% of the entire data range and show a consider-
ably larger amount of variance. Also, much fewer
points are located in the data range covered by
smaller fish. The residuals of a regression through
these points show a trumpet-shaped distribution,
indicating heteroskedasticity. One of the main re-
quirements in regression is that of homogeneous
variance of the data over the entire data range.
Both methods violate this rule.

As a consequence, for estimation of VBGF pa-
rameters, the variance in growth rates of smaller
fish sizes have a high influence on the estimation
of K, as discussed above. Some points may thus
have a considerable leverage’. The effect is worse
in the Bayley plot, since the transformation in-
volved there is radical. Additionally, in the Bayley
plot, L is subject to greater variance, since a
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minimal change in slope leads to a large change
in L_, due to the reciprocal transformation of
mean length. Heteroskedasticity leads to an infla-
tion of the confidence intervals of the regression
coefficients (Norusis 1985). These limitations of the
methods must be considered in applications of the
regression models.

Comparative Sensitivity Analyses of the
Bayley Plot and the Gulland-and-Holt Plot

The behavior of the Bayley plot and the
Gulland-and-Holt plot can be investigated and
compared through sensitivity analysis using the
data in the file PHILSAMP.WK1 (see Appendix
II). The procedure adopted here (for the case of
the simple versions only) was to use the slopes of
both regressions (obtained on a random sample
dataset, n = 198, with arithmetic mean regres-
sions) as reference and vary their values in steps
of +10% (Majkowski 1982). Resultant values of K,
L_ and ¢ were thus computed and their responses
studied (Fig. 4).

In the case of the Gulland-and-Holt plot (Fig.
4A), the change in slope (i.e., the response to vari-
ance in the dataset) has only a limited effect on
the growth parameters, K and L_, with ¢’ compen-
sating the diverging effect. Here the Type I re-
gression is appropriate.

In the case of the Bayley plot (Fig. 4B), the
change in slope has a strong effect on the growth
parameters, particularly on L_ (the latter is due
to the nonlinearity of the x-scale). This effect can-
not be compensated by ¢', which suffers a strong
bias at slope changes below 30% of the true value.

Hence, given the tendency for a Type I (=AM,
or predictive) regression to have a low slope when
variance is high, there is a tendency for the
Bayley plot to overestimate L_ and ¢’, and to un-
derestimate K. This effect can be partly counter-
acted by using a Type II (=GM, or functional) re-
gression with the Bayley plot. This leads to lower
estimates of L_ and higher estimates of K and ¢'.
In this case, the GM slope is 26% higher than the
AM slope leading to a ¢’ that is 4.7% greater.

The Bayley plot is capable of extracting more
information from a dataset, as it uses an addi-
tional variable (i.e., weight). In spite of this, the
above leads to the conclusion that the Gulland-
and-Holt plot is more robust and is easier to use,
i.e., (a) does not require individual fish weight
which is often not measured, and (b) is directly
computed by most statistical software packages.
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crease in growth rate with the reciprocal of
average fish length.

Based on the same set of variables as
used in the extended Gulland-and-Holt plot,
the causal path diagram for the extended
Bayley plot is shown in Fig. §B. Through
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inclusion of auxiliary variables, a greater
amount of variance in Nile tilapia growth
rate could be accounted for (68%), compared
to the ordinary Bayley plot. The structure
of the path diagram is the same as for the
extended Gulland-and-Holt plot, since the

g8 § & 8
UBEL
\

[l [l
-%0 -0 -0 [ 0 L]

Change of slope (%)

Confidence interval (%)
R0 290 0

_ {11
-S0 90

'\ AM siope

18 st

:
-’

g 8
W

-

-]

same set of variables was found to be sig-
nificant. The amount of variance explained
by the extended Bayley plot is higher than
the amount explained by the extended
Gulland-and-Holt plot (40%), although both
have the same set of auxiliary variables. In
the extended Bayley plot, a much higher
portion of the total variance is explained by
mean length. Correspondingly, the auxiliary
variables participate to a lesser extent in
the explanation of variance in growth rate,
which is denoted by the smaller values of
their path coefficients. The independent
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treatment variables are also correlated in
the extended Bayley plot, yet to a lesser
degree.
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0 As auxiliary variables in explaining fur-
ther variance, three treatment variables are
significant in controlling Nile tilapia growth

in the manure-fed ponds. These were stock-

Fig: 4. Sensitivity analysis of A) ordinary Gullaﬁnd-and-Holt plot, and B) ing density (here in a transformed state as
ordinary Bayley plot, based on an AM regression on a random sample th t of k 3) loadi

dataset (n = 198). In the Gulland-and-Holt plot, ¢’ compensates the effects of ‘1€ SQuare root o g"l“ J Ilnam“'e oading
slope changes on growth parameters. In the Bayley plot, lower slopes have Tate (in form of kg-hal-day?!) and the pond

extreme effects on growth parameters, which ¢’ cannot compensate. Here surface area in m2 A further variable, solar

the GM regression is appropriate. Note large difference of ordinate scales.

On the other hand, the Bayley method should be
used only with (a) data with a low amount of
variance, and (b) the Type II regression.

Path Analysis

A path diagram for the ordinary Bayley plot is
shown in Fig. 5A. The amount of variance ex-
plained by the Bayley plot is larger (63%) than in
the Gulland-and-Holt plot (28%), denoted by the

radiation, reflects uncontrollable environ-
mental effects on fish growth. Three vari-
ables have a certain degree of positive cor-
relation among each other (manure input, stocking
density, and mean length). This is due to the fact
that in all experiments, all three variables in-
creased with experiment duration, due to the ex-
perimental design. Solar radiation and pond area
are not correlated with any of the other variables.

Taking advantage of the large number of vari-
ables available in the ICLARM-CLSU dataset,
more detailed causal path models could be de-
signed and tested. Although some of the variables



are not significant in directly explaining variance
in fish growth, they can be used to reflect second-
ary causal relationships with other, significant
variables. This requires a stepwise process of hy-
pothesis formulation, path diagram design, and
multiple regression computation, followed by draw-
ing of the path diagram and inspection of the path
coefficients. In case of statistical inconsistencies or
implausibilities in terms of biological theory, the
process must be repeated again until a correct and
explicable model is derived.

After numerous trials, the causal path diagram
shown in Fig. 5C was obtained, based on the ex-
tended Bayley plot and a reduced set of variables.
The diagram represents the same pattern as that

uilt with the extended Gulland-and-Holt method.
In the present path diagram, the path coefficients,
correlations and residual effects are different only
for the part concerning growth rate in weight (W-
GRO). This path diagram comprises 10 variables,
including length growth rate, where WIND is the
cumulative run of wind, CLOUD is the cloud cov-
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ering, WATEM is the water temperature, and
OXY is the early morning dissolved oxygen con-
centration (as saturation in per cent). Growth rate
in weight is influenced by four variables directly,
of which two are treatment variables. The vari-
ables are the reciprocal mean length, stocking
density, early morning oxygen saturation, and
pond area. Together, these five variables explain
68% of the total variance in weight growth rate.
Two of them are treatment variables. Individually,
the contributions of the variables towards explain-
ing total variance are: 39% (1/ML), 5% (POND),
11% (OXY) and 3% (DENS).

The strong influence of early morning dis-
solved oxygen concentration can be further
analyzed with path analysis. Five variables were
found significant in predicting OXY. One is a
treatment variable (manure input), three are un-
controllable meteorological variables (solar radia-
tion, wind run, and cloud covering) and one is an
uncontrollable variable of the pond environment
(water temperature). These variables explain 58%
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Fig. 5. Path diagrams for A) the ordinary Bayley plot, B) the extended Bayley plot with five
predictor variables, and C) the extended Bayley plot with four direct predictor variables and
five further explanatory variables. W-GRO = growth rate in weight; MLl = reciprocal of mean
length; MANU = livestock manure input (kg dry weight ha-l.day-1); DENS = square root of
stocking density (kg-m"3); POND = pond arca (m2); RAD = solar radiation (ly-day’1); OXY =
early morning dissolved oxygen content (% saturation); WATEM = early morning water
temperature (*C); WIND = cumulative run of the wind (km-day-!); CLOUD = cloud cover
(decals); U = residual effect or unexplained variance,
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of the total variation in OXY. Their individual
amounts of explanation are: MAN 35%, TW 16%,
RAD 1.5%, WIND 13% and CLOUD 5%. The me-
teorological variables show positive correlation.
The manure input is correlated with stocking den-
sity and mean length, for reasons given above.

Water temperature has a relatively strong in-
fluence on OXY. The variance in water tempera-
ture can be explained to 38% by solar radiation
and wind. Individually, they are responsible for
14% (RAD) and 36% (WIND) of the total variation.
Solar radiation increases water temperature, while
wind reduces water temperature through
evaporative cooling. Cloud covering had an implau-
sible sign. In the present path diagram, solar ra-
diation and wind act twice as predictors (for
WATEM and for OXY). Water temperature was
not significant as a direct predictor for fish
growth.

In the previous path diagrams, solar radiation
and manure input were used to directly explain
variance in Nile til:pia growth rate. In those mod-
els, the amount of explained variance was lower.
For management purposes under field conditions
in developing countries, manure input and solar
radiation are easier to handle in terms of growth
prediction than oxygen concentration. In the
present detailed path diagram, OXY was incorpo-
rated as an intermediate variable. In terms of
path analysis, RAD, WIND, CLOUD form com-
pound paths, contributing individually and in a
combined manner to the variation in growth rate.

Discussion of Path Analysis

With path analysis, the effects discovered and
quantified with the regression methods can be
visualized in form of path diagrams. This is possi-
ble through their connection with the extended
Gulland-and-Holt and extended Bayley methods,
which are linear models. Additional analyses can
be made through the development of detailed
causal path diagrams of the culture systems, based
on the available variables and significant relation-
ships between them. :

Numerous different path diagrams can be hy-
pothesized with the same dataset, yet there are
rules of path analysis and regression which will
limit the outcome in terms of plausibility. Newer
developments in path analysis allow for the con-
sideration of unmeasured variables but require
considerable computational efforts (Blalock 1985a).
Further developments have widened the theoreti-

cal foundation of path analysis, with the inclusion
of effects such as feedback loops (Heise 1975;
dJéreskog and Sérbom 1984). With more extensive
datasets from aquaculture systems, more detailed
analyses with path analysis may be performed in
the future, based on the LISREL-approach
(Joreskog and Sérbom 1984) which is a combina-
tion of factor analysis and multiple regression.

Conclusions and Recommendations

In the present study, flexible regression models
were derived with the “extended Bayley” method
and path analysis. With these, and with the “ex-
tended Gulland-and-Holt. plot” (Pauly et al., this
vol.; Prein, this vol., Prein and Milstein, this vol.),
growth can be predicted over a wide range of cul-
ture conditions, if these are included as param-
eters in the model. Within the rules of regression,
the main influential variables controlling fish
growth can be identified and their effects quanti-
fied in form of regression coefficients. These are
combined in form of VBGF growth parameters.

Depending on the source and quality of the
data, considerable efforts may be necessary in the
preparation of datasets for analysis, particularly if
some variables were not measured. Data from dif-
ferent sources may be merged into one dataset for
combined analysis if the species and variables
match each other (Prein 1990). The methods are
useful analytic tools when the datasets have well-
spread variances and wide data ranges for all en-
vironmental and treatment variables of interest, as
is the case in well-designed factorial experiments.
As a whole, the strategy of reanalyzing ‘old’ data
with different new methods has proved rewarding
and beneficial, particularly in view of the low costs
of such research (involving essentially only person-
nel cost).

Recommendations for Further Applications

The further successful application of the meth-
ods to other ‘old’ data will depend on the quality of
the datasets. These should be inspected for consist-
ency with the rules of multiple regression, but also
with the particular requirements of the methods.
For example, the extended Bayley method requires
precise measurements of both weight and length.
Both methods used here cannot accept collinearity
among predictor variables. High variance in the
datasets due to imprecision or measurement errors
cannot be explained by the methods.



It would be rewarding to find and analyze
datasets which contain detailed information on
pond biology. These variables could not be studied
with the datasets analyzed here since they were
not measured. Further, simulation studies could
provide a better understanding of the sensitivity of
the methods towards different amounts of variance
in the data.

For the design of new experiments that are to
be analyzed with the multivariate methods pre-
sented here and in Pauly et al. (this vol.), the fol-
lowing conclusions may be drawn. The main aim
should be to have as much variance in the vari-
ables as possible in order to avoid collinearity
among environmental, treatment and target vari-
ables (here fish size). The experimental layout
should be in a factorial form, where the fish sizes
range from small to large. A wide range of stock-
ing densities is required for all fish sizes and
treatments used. This means that small fish would
have to be stocked at high densities and, con-
versely, large fish at low densities. Only with such
a spread in the data can the regression describe
the effects precisely. Similar requirements of wide
data ranges can be made for other treatments,
such as manure and feed inputs and, as far as
controllable through scheduling, environmental
variables such as solar radiation and water tem-
perature.

The experiments do not have to be of long du-
ration. A few, 14-day intervals over a total period
of six to eight weeks would suffice for each treat-
ment. It is more important to have a wide range
of conditions than many intervals repeating the
same few conditions. Due to the distortions of the
fish size data caused by the transformations, it
must be concluded that more experiments should
be made with smaller fish and that these should
be sampled at shorter intervals. Greatest care
must be taken to obtain precise estimates of aver-
age fish size, since the influence of measurement
error is greatest in small fish. Larger fish can be
sampled at greater intervals. All environmental
and treatment variables should be measured at
such frequencies that a representative average
value can be obtained from them, which reliably
reflects the true conditions during the interval.

The present study has shown that the
multivariate analysis methods presented here can
be used to derive empirical models of fish growth
in aquaculture systems. The degree of detail of
the models and the accuracy of growth predictions
depend on the quality of the datasets used to build
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the models. More detailed and accurate datasets
are more rewarding and permit deeper insights
into the qualitative and quantitative relationships
governing the growth of tilapia in ponds.
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