SOME ASPECTS OF POPULATION DYNAMICS OF THREE PENAEID SHRIMPS (PENAEUS MONODON, PENAEUS SEMISULCATUS AND METAPENAEUS MONOCEROS) FROM THE BAY OF BENGAL, BANGLADESH

M. G. MUSTAFA*, M. S. ALI** AND M. A. AZADI

Department of Zoology, University of Chittagong, Chittagong 4331, Email: maaazadi@yahoo.com

ABSTRACT

In the Bay of Bengal of Bangladesh area the values of asymptotic length (L_∞) for tiger shrimp (Penaeus monodon), green tiger shrimp (Penaeus semisulcatus) and brown shrimp (Metapenaeus monoceros) were found to be 30.0 cm, 23.5 cm and 32.1 cm for male and 27.0 cm, and 19.4 cm for female respectively while the growth co-efficient (K) were 0.94, 0.80 and 1.5 year$^{-1}$ for male and 0.97, 0.90 and 1.52 year$^{-1}$ for female respectively. The length growth performance index (c) of the Pauly and Munro’s function were in the range of 2.61-3.00. Natural mortality, fishing mortality and total mortality for tiger, green and brown shrimps were in the range of 1.72-2.75, 2.13-3.94 and 3.85-6.59 respectively. Length frequency data analysis through FiSAT programme reveals that the studied three species were under fishing pressure. Spawning months appeared to be from April to July for main cohort. The recruitment pattern of the penaeid stocks suggested one main pulse of annual recruitment and current exploitation rate were in the range of 0.533-0.667.

INTRODUCTION

Several authors have indicated the existence of a rich population of penaeid shrimps in the Bay of Bengal and a series of surveys carried out by both national and international agencies [1]. From these surveys [2-14] various standing stock and potential yield estimates have been made.

For conservation and sustainable exploitation of the shrimps, scientific management based on population dynamics study is the most important issue. Proper management and utilisation of shrimp resources in developing countries are suffering for the lack of appropriate information on natural and fishing mortality. Among the shrimp species studied tiger shrimp, green tiger shrimp and brown shrimp contributed about 75% of the trawl catch [15].
In the present investigation three commercially important shrimps (*Penaeus monodon, Penaeus semisulcatus* and *Metapenaeus monoceros*) from the trawl catch fishery of the Bay of Bengal of Bangladesh area were considered for the study of the following parameters:

Asymptotic length (*L*ₐ), growth co-efficient (*K*), natural mortality (*M*), fishing mortality (*F*), total mortality (*Z*), recruitment pattern, length at first capture (*Lc*), relative yield-per-recruit, stock prediction (Thompson and Bell method), length weight relationship and biological sustainable management.

MATERIALS AND METHODS

The study was conducted from April 1995 to March 1997. Length-frequency and length-weight data were collected for present study from commercial shrimp trawlers immediately after return from trips and also research vessel R.V. Anusandhani, fished within the continental shelf of Bangladesh. Gears used were a pair shrimp trawl of the same size and were operated from out riggers. The mesh size of cod end was 45mm. Trawling depth varying from 20m to 90m. Total length (from the tip of the rostrum to the tip of the telson) of the 1907 *P. monodon* male, 2286 *P. monodon* female, 764 *P. semisulcatus* male, 637 *P. semisulcatus* female, 1781 *M. monoceros* male and 21066 *M. monoceros* female shrimps were measured at one centimeter intervals with the help of a centimeter scale by placing the shrimp dorso-ventrally on the measuring board immediately after the catch as well as in the landing center at Chittagong port. Male and female sexes were measured separately. Sampling was done fortnightly and all length-frequency data for each month were pooled and pooled data were entered in computer and analysed through FiSAT programme [16].

RESULTS AND DISCUSSION

Population growth parameters (*L*ₐ, *K* and *Z/K*), mortality, selectivity, recruitment and length-weight relationship of three shrimps (*P. monodon, P. semisulcatus* and *M. monoceros*) estimated by different methods [16-19] are given in Table-I. The set of estimates obtained by different methods were found to be comparatively close. Back calculation of growth curve revealed that approximate spawning month appeared for studied shrimps was during April to July for main cohort and September to January for secondary cohort. Variation in the growth coefficient was observed between male and female, and female species showed higher growth coefficient than male. On the basis of constant juvenile and adult growth rate it was found that the tiger shrimp reached 17.0 to 18.5 cm within one year and 25.0 to 27.0 cm in the following year, the green tiger shrimp reached 13.0 to 16.0 cm within one year and 18.5 to 22.5 cm in the following year and the brown shrimp reached 12.0 to 14.5 cm within one year and 16.0 to 19.0 cm in the following year. Faster growth was observed in 1st year. Maximum yield could be attained by selecting capture (length) within a year. *P. monodon* and *P. semisulcatus* showed very slower growth coefficient in the third year. The growth performances (♀) of the male and female *P. monodon, P. semisulcatus* and *M. monoceros* were found to be 2.927 and 3.00, 2.645 and 2.817, and 2.611 and 2.757 respectively.

The natural mortality of the male species of *P. monodon, P. semisulcatus* and *M. monoceros* were found to be 1.72, 1.73, 2.75, while for female of the same species were 1.72, 1.72 and 2.65 respectively. Simultaneously the fishing mortality of the male species of *P. monodon, P. semisulcatus* and *M. monoceros* were found to be 3.33, 3.47 and 3.58, while for the females of the same species were 2.13,
SOME ASPECTS OF POPULATION DYNAMICS OF THREE PENAEID SHRIMPS

2.98 and 3.94 respectively (Table 1). The selection pattern (L_m) of the male species of *P. monodon*, *P. semisulcatus* and *M. monoceros* were found to be 19.79, 15.88 and 9.29 while for the female of the same species were 22.79, 19.86 and 10.72 respectively. Wide variations were observed for different values of L_m for different selected species. The exponent value (b) of length-weight relationship of the male species of *P. monodon*, *P. semisulcatus* and *M. monoceros* were found to be 2.82, 2.895 and 2.522, while for the females of the same species were 2.88, 2.921 and 2.661 respectively. Major peaks of recruitment for the tiger shrimp, green tiger shrimp and Brown shrimp were during August to September, June to August and September to October respectively. The recruitment patterns of the three studied shrimp stocks in the Bay of Bengal of Bangladesh waters suggested only one main pulse of annual recruitment and this was supported by the results of catch rate analysis [20]. It is therefore concluded from the recruitment pattern that peak recruitment for the three studied shrimps were appeared during May to September and highly concentrated during July to September.

<p>| TABLE 1: GROWTH PARAMETERS AND GROWTH INDEX SUMMARY RESULTS OF MALE AND FEMALE P. MONODON, P. SEMISULCATUS AND M. MONOCEROS. |</p>
<table>
<thead>
<tr>
<th>Name of species</th>
<th>ELEFANT</th>
<th>Powell-</th>
<th>Wetherall</th>
<th>Mortality</th>
<th>L_m</th>
<th>Recruitment</th>
<th>Length-weight relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. monodon male</td>
<td>L_m K</td>
<td>30.0 0.94</td>
<td>31.34 6.26</td>
<td>1 7 3.30 5.05</td>
<td>19.79</td>
<td>Apr-May</td>
<td>0.001 2.82</td>
</tr>
<tr>
<td>P. monodon female</td>
<td>L_m K</td>
<td>32.1 0.97</td>
<td>32.21 4.02</td>
<td>1 7 2.13 3.85</td>
<td>22.79</td>
<td>Apr-May</td>
<td>0.002 2.88</td>
</tr>
<tr>
<td>P. semisulcatus male</td>
<td>L_m K</td>
<td>23.5 0.80</td>
<td>23.22 4.68</td>
<td>1 7 3.47 5.20</td>
<td>15.88</td>
<td>May-Jun</td>
<td>0.0116 2.895</td>
</tr>
<tr>
<td>P. semisulcatus female</td>
<td>L_m K</td>
<td>27.0 0.90</td>
<td>27.21 5.37</td>
<td>1 7 2.98 4.70</td>
<td>19.86</td>
<td>May-Jun</td>
<td>0.0112 2.921</td>
</tr>
<tr>
<td>M. monoceros male</td>
<td>L_m K</td>
<td>16.5 1.50</td>
<td>16.16 3.87</td>
<td>2 7 3.58 6.43</td>
<td>9.29</td>
<td>May-Jun</td>
<td>0.0258 2.522</td>
</tr>
<tr>
<td>M. monoceros female</td>
<td>L_m K</td>
<td>19.4 1.52</td>
<td>19.33 3.62</td>
<td>2 6 3.94 6.59</td>
<td>10.92</td>
<td>May-Jun</td>
<td>0.02071 2.661</td>
</tr>
</tbody>
</table>

Exploitation and yield per recruit

It was found that tiger shrimp (*P. monodon*), green tiger shrimp (*P. semisulcatus*) and brown shrimp (*M. monoceros*) were over exploited [21] in the Bay of Bengal (E = 0.628 ±0.0438, E > 0.5).

The yield per recruit analysis with different selectivity revealed that a change in selection was likely to produce a higher yield for shrimps. Change in selection to L_m level for *P. monodon* and *P. semisulcatus* could provide a better yield of shrimps.

P. monodon

P. monodon attained its maximum size of biomass (standing stock) at maximum relative yield per recruit (E=0.60 for male, E=0.65 for female) when for the potential yield per recruit the length of first capture (L_m) were 19.79 cm for male and 22.79 for female.

M. monoceros

The maximum values of relative yield per recruit were obtained at E=0.626 for male and E=0.615 for female and for this potential yield per-recruit the lengths of first capture (L_m) were 9.298 cm for male and 10.92 cm for female when the biomass (standing stock) attained its maximum size.
Fig. 1. Estimation of yield, biomass and value of *P. monodon* male, *P. monodon* female, *P. semisulcatus* male, *P. semisulcatus* female, *M. monoceros* male, and *M. monoceros* female based on Thompson and Bell methods.

P. semisulcatus

The maximum values of relative yield per recruit were $E=0.572$ for male and $E=0.597$ for female when the lengths of first capture were $L_c=15.88$ cm for male and $L_c=19.86$ cm for female at which the biomass (standing stock) attained its maximum size.

It appears that yield per recruit for shrimps have generally swinging between Maximum Sustainable Yield (MSY) and over exploitation. These result indicate that the exploitation rate of studied species have been above the optimum exploitation level.
Yield, biomass and value prediction

Using the results of Jones' length cohort analysis in the (length converted) Thompson and Bell [22] model current size of stock biomass, potential yield and values were analysed. Figure 1 presents the values of yield, biomass and values at different levels of fishing efforts for P. monodon, P. semisulcatus and M. monoceros. The present level of fishing mortality was 3.33 for P. monodon male, 2.13 for P. monodon female, 3.47 for P. semisulcatus male, 2.98 for P. semisulcatus female, 3.58 for M. monoceros male and 3.94 for M. monoceros female. The exploitation rates were 0.659 and 0.553 for P. monodon male and female, 0.667 and 0.634 for P. semisulcatus male and female, 0.572 and 0.597 for M. monoceros male and female respectively. The maximum sustainable yield of P. monodon, P. semisulcatus and M. monoceros could be attained for an F-factor 1.6, 1.5 and 2.0 respectively and average fishing mortality have to be reduced by 46.85%.

REFERENCES

Manuscript received on 26th November, 2005 and revised manuscript received on 7th March, 2007.