Socioeconomic and Bioeconomic Analysis of Coastal Resources in Central and Northern Java, Indonesia

Bambang Edi Priyono
Directorate General of Fisheries
Agriculture Department, Jln. Harsono,
RM No.3, Ragunan Pasar Minggu, Jakarta, 11250, Indonesia

Abstract

Indonesia’s fisheries exports rose from 2 206 t in 1970 to 598 385 t in 1996 with a subsequent export value rise from US$0.69 billion to US$1.78 billion. The surplus in the balance of trade (BOT) was US$1.59 billion in 1996. The fisheries exports were predominantly shrimp, tuna, skipjack and demersal fishes. Large scale fisheries operations are prevalent in the Java Sea. The dominant fishing gear is hook-and-line (40%), gillnet (31%), traps (10%), seine net and lift-net (6%), purse seine (1%), shrimp net with BED (0.04%) and others (6%). The large scale fisheries e.g. purse seine, tuna long line, shrimp trawl and fish net use larger vessels, while most of the large scale fisheries utilize boats between 5 - 30 GT. Small scale fisheries exploit the coastal waters resulting in overcrowding in the Java Sea.

In terms of production and technological efficiency, the combination of manpower inputs, total volume of fuel/day and total number of vessels are not optimal either for small or large scale vessels. It is recommended in the large scale fisheries that the volume of fuel/day should be increased, while the total number of boats should be reduced. Conversely the use of fuel/day for large scale fisheries should be increased. Expanded use of fuel/day for large scale vessels would increase offshore operations, which would lessen the fishing pressures in near-shore waters. In the northern part of Java, large scale fisheries do not generate any discards or by-products because most of the fishers utilize the fish captured for family consumption, local market or commercial export purposes.

Budget analysis, using the internal rate of return (IRR), net present value (NPV), payback period (PP) and benefit-cost analysis (B/CA), showed that almost all vessels are profitable and ready for new capital investment, except for Danish seine A vessels. Results using the Schaefer surplus yield production model indicate that the existing total fishing effort remains lower than the maximum sustainable yield (MSY) level in the inshore waters. The utilization rate in 2001 is currently 99.4%.

It is recommended that an in-depth study be conducted using simultaneous equation modeling that will integrate the Schaefer model, demand function, production, taxation policy and the feasibility constraints into one general model.
Socioeconomic Profile
Review of the Status of Fishery Resources: Volumes and Values of Fish Production

Over 1960 - 96, the national fisheries production increased nearly 5.88 times, increasing from 756 765 t to 4 452 000 t. The national fish production includes the marine capture sector that provides the highest share at 75.98%, followed by the coastal brackish-water culture at 9.08%, and finally by the inland fish production (capture at 7.54% and culture at 7.39%).

Marine capture fisheries consist of the small pelagic fish (37.21%), demersal fish (28.58%), large pelagic fish (9.978%), coral fish (2.45%), penaeids (1.89%), squids (0.58%) and ornament fish, estimated at around 1.5 billion of fish. The large pelagic fish are the skipjack (3.37%), eastern little tuna (tongkol, 2.92%), tuna (2.05%), king mackerel/tenggiri (0.84%) and shark/marlin/sailfish/sword fish (0.42%).

Following (Kmenta 1971) the logistic growth curve (LGC) model of marine capture production in Central and Northern Java can be estimated using:

\[\ln Z = 2.700 \, 245 - 0.071 \, 79 \, T \]

\[t \text{ test: } (-47.23) \]

\[R^2 = 0.98; \, n = 37; \, df = 35 \]

Where:
- \(Z \) = equal to the value of \((MSY/X - 1)\)
- \(MSY \) = maximum sustainable yield estimated at 6 285 000 t annually
- \(X \) = production of marine capture annually (t)
- \(T \) = time trend

<table>
<thead>
<tr>
<th>Year</th>
<th>Production (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td>3 073 353</td>
</tr>
<tr>
<td>1997</td>
<td>3 186 139</td>
</tr>
<tr>
<td>1998</td>
<td>3 298 812</td>
</tr>
<tr>
<td>1999</td>
<td>3 411 085</td>
</tr>
<tr>
<td>2000</td>
<td>3 522 670</td>
</tr>
<tr>
<td>2001</td>
<td>3 633 292</td>
</tr>
<tr>
<td>2002</td>
<td>3 472 680</td>
</tr>
<tr>
<td>2003</td>
<td>3 850 580</td>
</tr>
<tr>
<td>2004</td>
<td>3 954 109</td>
</tr>
<tr>
<td>2005</td>
<td>4 060 961</td>
</tr>
<tr>
<td>2006</td>
<td>4 163 011</td>
</tr>
</tbody>
</table>

Fish production from the capture fisheries (marine and inland) and culture (coastal brackish-water and inland) during 1960 - 96 showed that the growth of marine capture fisheries is relatively high, compared to other fish production that more or less remained the same (Table 2, Fig. 1).
<table>
<thead>
<tr>
<th>Year</th>
<th>Capture</th>
<th>Culture</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Marine</td>
<td>Inland</td>
<td>Coastal</td>
</tr>
<tr>
<td>1960</td>
<td>410 043</td>
<td>249 674</td>
<td>43 078</td>
</tr>
<tr>
<td>1961</td>
<td>525 198</td>
<td>297 988</td>
<td>32 807</td>
</tr>
<tr>
<td>1962</td>
<td>537 983</td>
<td>281 449</td>
<td>32 704</td>
</tr>
<tr>
<td>1963</td>
<td>558 970</td>
<td>279 165</td>
<td>39 239</td>
</tr>
<tr>
<td>1964</td>
<td>590 000</td>
<td>272 860</td>
<td>42 421</td>
</tr>
<tr>
<td>1965</td>
<td>665 107</td>
<td>296 007</td>
<td>53 413</td>
</tr>
<tr>
<td>1966</td>
<td>720 236</td>
<td>347 591</td>
<td>51 876</td>
</tr>
<tr>
<td>1967</td>
<td>677 933</td>
<td>364 875</td>
<td>56 750</td>
</tr>
<tr>
<td>1968</td>
<td>722 512</td>
<td>320 410</td>
<td>43 528</td>
</tr>
<tr>
<td>1969</td>
<td>785 344</td>
<td>314 201</td>
<td>51 876</td>
</tr>
<tr>
<td>1970</td>
<td>807 391</td>
<td>286 519</td>
<td>55 908</td>
</tr>
<tr>
<td>1971</td>
<td>820 447</td>
<td>285 745</td>
<td>60 788</td>
</tr>
<tr>
<td>1972</td>
<td>836 289</td>
<td>301 412</td>
<td>51 203</td>
</tr>
<tr>
<td>1973</td>
<td>888 518</td>
<td>249 592</td>
<td>60 481</td>
</tr>
<tr>
<td>1974</td>
<td>948 566</td>
<td>240 893</td>
<td>66 756</td>
</tr>
<tr>
<td>1975</td>
<td>996 856</td>
<td>228 511</td>
<td>78 776</td>
</tr>
<tr>
<td>1976</td>
<td>1 081 589</td>
<td>246 711</td>
<td>80 158</td>
</tr>
<tr>
<td>1977</td>
<td>1 157 691</td>
<td>254 243</td>
<td>87 604</td>
</tr>
<tr>
<td>1978</td>
<td>1 227 386</td>
<td>249 146</td>
<td>83 995</td>
</tr>
<tr>
<td>1979</td>
<td>1 317 744</td>
<td>248 161</td>
<td>93 664</td>
</tr>
<tr>
<td>1980</td>
<td>1 401 000</td>
<td>250 900</td>
<td>95 300</td>
</tr>
<tr>
<td>1981</td>
<td>1 408 272</td>
<td>264 983</td>
<td>112 916</td>
</tr>
<tr>
<td>1982</td>
<td>1 490 719</td>
<td>265 348</td>
<td>129 279</td>
</tr>
<tr>
<td>1983</td>
<td>1 682 019</td>
<td>265 562</td>
<td>134 072</td>
</tr>
<tr>
<td>1984</td>
<td>1 712 804</td>
<td>269 321</td>
<td>142 404</td>
</tr>
<tr>
<td>1985</td>
<td>1 821 725</td>
<td>269 266</td>
<td>156 367</td>
</tr>
<tr>
<td>1986</td>
<td>1 922 781</td>
<td>273 012</td>
<td>170 310</td>
</tr>
<tr>
<td>1987</td>
<td>2 017 350</td>
<td>276 291</td>
<td>192 123</td>
</tr>
<tr>
<td>1988</td>
<td>2 169 557</td>
<td>281 264</td>
<td>233 283</td>
</tr>
<tr>
<td>1989</td>
<td>2 272 179</td>
<td>296 385</td>
<td>258 491</td>
</tr>
<tr>
<td>1990</td>
<td>2 370 107</td>
<td>292 537</td>
<td>287 073</td>
</tr>
<tr>
<td>1991</td>
<td>2 537 612</td>
<td>294 477</td>
<td>323 156</td>
</tr>
<tr>
<td>1992</td>
<td>2 692 068</td>
<td>300 896</td>
<td>337 431</td>
</tr>
<tr>
<td>1993</td>
<td>2 886 289</td>
<td>308 649</td>
<td>355 284</td>
</tr>
<tr>
<td>1994</td>
<td>3 080 168</td>
<td>336 141</td>
<td>346 214</td>
</tr>
<tr>
<td>1995</td>
<td>3 292 930</td>
<td>329 710</td>
<td>361 239</td>
</tr>
<tr>
<td>1996</td>
<td>3 382 457</td>
<td>335 706</td>
<td>494 335</td>
</tr>
</tbody>
</table>

Source: Directorate General of Fisheries (DGF) 1998.
Economic Growth and Welfare: Contribution of the Fishery Sector to Economic Growth and Welfare

Below are the major analyses based on relevant fisheries statistics from 1985 to 1997.

- During 1985 - 97, the gross domestic product (GDP) valued at constant market price increased from 79,679 to 433,685 billion Rupiahs (1 US$ = 2,360 Rupiah, annual average from 1993 - 97), an increment of almost 5.44 times. Similarly, the gross national product (GNP) at constant market prices also multiplied from 76,602 to 418,418 billion Rupiahs a rise of 5.46 times.
- The human population increased on average by 2.21% between 1980 - 87 and by 1.57% between 1988 - 97.
- Per capita GDP during 1985 - 97 rose from 487,730 to 2,170,200 Rupiahs annually (almost 4.45 times). Economic growth was thus increasing significantly during these periods.
- The per capita gross regional domestic product (GRDP) in DKI-Jakarta was the highest among all provinces with an annual average of Rps 7,324,400. From the agricultural sector and industries, the manufacturing of oil, non-oil and gas made the highest contribution to the national GDP at 21.86%. Other contributions came from trades/hotel and restaurants at 13.74%, agriculture/livestock/forestry and fisheries at 14.79% and other services at 8.22%.
- The fisheries sector with a 1.51% share contributed minimally to the GDP.
- In 1988, the contribution of non-oil and gas to the national GDP increased at a rate of 90.86%. This suggests that oil and gas will be less important in the future.
- Information on the national GDP, gross national product (GNP) and population is given below (Table 3, Fig. 2).
Table 3. Indonesian GNP, GDP and GVA gross value-added from 1985 to 1997 at constant market prices.

<table>
<thead>
<tr>
<th>Year</th>
<th>Total GNP (billion Rupiah)</th>
<th>Total GDP (billion Rupiah)</th>
<th>Industry and Others (billion Rupiah)</th>
<th>Services (billion Rupiah)</th>
<th>Agriculture (billion Rupiah)</th>
<th>Fishery (billion Rupiah)</th>
<th>Population (million)</th>
<th>GDP per Capita (Rupiah)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1985</td>
<td>76 602</td>
<td>79 679</td>
<td>57 086</td>
<td>3 291</td>
<td>19 302</td>
<td>1 311</td>
<td>163 367</td>
<td>487.73</td>
</tr>
<tr>
<td>1986</td>
<td>78 646</td>
<td>90 014</td>
<td>59 518</td>
<td>3 270</td>
<td>19 687</td>
<td>1 398</td>
<td>166 358</td>
<td>495.77</td>
</tr>
<tr>
<td>1987</td>
<td>90 270</td>
<td>94 302</td>
<td>62 655</td>
<td>3 422</td>
<td>20 230</td>
<td>1 484</td>
<td>169 850</td>
<td>530.20</td>
</tr>
<tr>
<td>1988</td>
<td>96 454</td>
<td>99 936</td>
<td>75 198</td>
<td>3 570</td>
<td>21 168</td>
<td>1 557</td>
<td>173 415</td>
<td>576.28</td>
</tr>
<tr>
<td>1989</td>
<td>103 723</td>
<td>107 321</td>
<td>81 519</td>
<td>3 716</td>
<td>22 086</td>
<td>1 626</td>
<td>177 056</td>
<td>606.14</td>
</tr>
<tr>
<td>1990</td>
<td>110 986</td>
<td>115 217</td>
<td>88 879</td>
<td>3 981</td>
<td>22 357</td>
<td>1 745</td>
<td>178 170</td>
<td>646.67</td>
</tr>
<tr>
<td>1991</td>
<td>118 746</td>
<td>123 181</td>
<td>96 303</td>
<td>4 215</td>
<td>22 663</td>
<td>1 814</td>
<td>181 384</td>
<td>679.12</td>
</tr>
<tr>
<td>1992</td>
<td>126 146</td>
<td>131 102</td>
<td>102 466</td>
<td>4 497</td>
<td>24 139</td>
<td>1 893</td>
<td>184 491</td>
<td>710.61</td>
</tr>
<tr>
<td>1993</td>
<td>135 872</td>
<td>139 707</td>
<td>110 241</td>
<td>4 897</td>
<td>24 569</td>
<td>2 053</td>
<td>187 584</td>
<td>751.83</td>
</tr>
<tr>
<td>1994</td>
<td>341 676</td>
<td>354 641</td>
<td>261 065</td>
<td>34 285</td>
<td>59 291</td>
<td>5 660</td>
<td>190 676</td>
<td>1 859.91</td>
</tr>
<tr>
<td>1995</td>
<td>367 012</td>
<td>383 767</td>
<td>286 594</td>
<td>35 406</td>
<td>61 767</td>
<td>5 974</td>
<td>193 750</td>
<td>1 980.74</td>
</tr>
<tr>
<td>1996</td>
<td>402 376</td>
<td>414 419</td>
<td>36 610</td>
<td>63 743</td>
<td>6 249</td>
<td>196 813</td>
<td>2 105.65</td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>418 418</td>
<td>433 685</td>
<td>37 724</td>
<td>64 149</td>
<td>6 562</td>
<td>199 837</td>
<td>5 170.20</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2. Contribution to the GNP and GDP by agricultural, non-agricultural and fisheries sectors in Indonesia from 1985 to 1997.
Gini Coefficient

In 1986, the Directorate General of Fisheries (DGF) studied the Gini Ratio using Lorenz Curves to show the family income distribution of the gillnet and purse seine activities on the north coast of Java. Gini coefficient is a measure of the degree of inequality of a variable (e.g. income) in a distribution of its elements and ranges from 0 where there is no concentration (perfect equality) to 1 where there is total concentration (perfect inequality). Table 4 gives the results of the study suggesting the presence of inequality on the family income distribution for those fishers using purse seine and gillnet.

Table 4. Gini ratio of family income distribution using two types of fishing gear.

<table>
<thead>
<tr>
<th>Type of Gear</th>
<th>Gini Coefficient Ratios of Total Income</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purse Seine</td>
<td>0.425</td>
</tr>
<tr>
<td>Gillnet</td>
<td>0.371</td>
</tr>
</tbody>
</table>

The main results of the study are given below.

- In Pekalongan, Central Java where there are mostly purse seiners and gillnetters, there is more equal income distribution. A study done in 1988 showed that a Gini Coefficient below 0.40 means a more equal income distribution.
- Purse seine fishers in the northern part of Java operated full time for 6 - 30 days*trip⁻¹, either to the South China Sea or to Masalembo-Mata-siri at Makasar Strait in the east. These are medium/semi large scale fisheries and more efficient than gillnetting.
- Fishers using gillnets operate along the coast line for 1 - 6 days*trip on a smaller scale.
- Income distribution between skipper and engineer are more varied for purse seiners.

Lorenz curves for the purse seine and gillnet activities are reported in Figs. 3 and 4.
Volumes and Values of Fish Exports and Imports 1970 - 96

From 1970 to 1996, the balance of trade (BOT) showed a surplus for Indonesia, increasing from US$5,994,000 (1970) to US$1,658,827,000 (1996), giving an annual average increase of 10.25%. The foreign exchange earnings (FEE) in 1996 were US$1,658,827,000.

In 1997, the volume of exports was more than twice (2.14 times) as large as imports. The biggest share of the imports came from fishmeal at 82.07% and this quantity increased by 26.65% over 1985 to 1994. In terms of values, exports were 17 times higher than imports in 1997. Shrimps (tiger, banana and white species) contributed 16.75% and tuna and skipjack contributed 14% to the total fish exports. The total exports increased at an average rate of 18.25% over 1987 - 96, when shrimp increased an annual rate of 22.52% while tuna and skipjack increased annually by 21.41%.
Table 5. The quantity and the value of fish export and imports and the balance of trade (BOT) in Indonesia from 1970 to 1996.

<table>
<thead>
<tr>
<th>Year</th>
<th>Quantity (t)</th>
<th>Value (US$'000)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exports</td>
<td>Imports</td>
</tr>
<tr>
<td>1970</td>
<td>2 206</td>
<td>2 801</td>
</tr>
<tr>
<td>1971</td>
<td>30 756</td>
<td>6 741</td>
</tr>
<tr>
<td>1972</td>
<td>41 156</td>
<td>4 883</td>
</tr>
<tr>
<td>1973</td>
<td>52 178</td>
<td>7 732</td>
</tr>
<tr>
<td>1974</td>
<td>54 953</td>
<td>6 980</td>
</tr>
<tr>
<td>1975</td>
<td>40 738</td>
<td>6 696</td>
</tr>
<tr>
<td>1976</td>
<td>54 389</td>
<td>26 784</td>
</tr>
<tr>
<td>1977</td>
<td>57 510</td>
<td>25 437</td>
</tr>
<tr>
<td>1978</td>
<td>63 485</td>
<td>27 099</td>
</tr>
<tr>
<td>1979</td>
<td>68 264</td>
<td>31 018</td>
</tr>
<tr>
<td>1980</td>
<td>78 705</td>
<td>39 517</td>
</tr>
<tr>
<td>1981</td>
<td>75 178</td>
<td>63 220</td>
</tr>
<tr>
<td>1982</td>
<td>89 629</td>
<td>83 140</td>
</tr>
<tr>
<td>1983</td>
<td>88 365</td>
<td>57 878</td>
</tr>
<tr>
<td>1984</td>
<td>75 695</td>
<td>50 668</td>
</tr>
<tr>
<td>1985</td>
<td>84 497</td>
<td>54 287</td>
</tr>
<tr>
<td>1986</td>
<td>107 443</td>
<td>57 426</td>
</tr>
<tr>
<td>1987</td>
<td>140 378</td>
<td>65 371</td>
</tr>
<tr>
<td>1988</td>
<td>181 218</td>
<td>37 861</td>
</tr>
<tr>
<td>1989</td>
<td>228 590</td>
<td>56 726</td>
</tr>
<tr>
<td>1990</td>
<td>320 241</td>
<td>73 285</td>
</tr>
<tr>
<td>1991</td>
<td>409 043</td>
<td>71 552</td>
</tr>
<tr>
<td>1992</td>
<td>421 367</td>
<td>81 082</td>
</tr>
<tr>
<td>1993</td>
<td>529 213</td>
<td>177 200</td>
</tr>
<tr>
<td>1994</td>
<td>545 371</td>
<td>276 829</td>
</tr>
<tr>
<td>1995</td>
<td>563 065</td>
<td>163 240</td>
</tr>
<tr>
<td>1996</td>
<td>598 385</td>
<td>154 893</td>
</tr>
</tbody>
</table>
Socioeconomic Analysis of the Artisanal or Large Scale Fishery Sector

The majority of Indonesia's fishing fleet is small scale with a limited capacity to sail offshore, and powered by sails or both sails and engine. The DGF in Indonesia has divided the small scale fishing fleet into three categories.

a. Dug-out boats (jukung) comprised 31.8% of Indonesia’s fishing boats in 1993. Most (77%) of these boats were in the eastern part of Indonesia, such as Moluccas, Irian Jaya, Sulawesi and the Lesser Sunda Island.

b. Three types of non-powered plank-built boats divided into: (i) small (< 7 m in length), (ii) medium (7 - 10 m) and (iii) large (> 10 m). The total number of vessels in this fleet was 57 557 or 14.7% of all Indonesian fishing boats.

c. Outboard engine boats. Some have modified gasoline or diesel engines mounted along the side with a long trailing propeller shaft and 2 - 15 HP engines. About 21% of all boats were outboard and 42.9% of all boats were operated in the north coast of Java.

Large scale boats are classified according to the fishing gear used. Commonly used gear in large scale fishing are seine nets, gillnets, traps and other traditional methods, such as shellfish collection, seaweed collection and cast net. The total number for each gear type is shown in Table 6.

In general, a crew of two to three fishers is adequate for most large scale operations, and in some cases vessels are operated alone.

Table 6 provides information on the fishing gear employed in Indonesia. The dominant gear in the large scale fisheries are hook-and-line (40%), gill-net (30.60%), traps (10%), lift-net (5.80%), seine net (5.84%), purse seine (1.34%), shrimp net with BED (0.04%) and other gear (7.37%).

Table 6. The types of fishing gear and production per gear in Indonesia from 1993 to 1997.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gear (Unit)</td>
<td>Production (t)</td>
<td>Gear (Unit)</td>
<td>Production (t)</td>
<td>Gear (Unit)</td>
</tr>
<tr>
<td>1. BED shrimp net</td>
<td>359</td>
<td>56 652</td>
<td>894</td>
<td>79 619</td>
<td>1 449</td>
</tr>
<tr>
<td>2. Seine net</td>
<td>38 584</td>
<td>411 549</td>
<td>32 314</td>
<td>380 679</td>
<td>41 662</td>
</tr>
<tr>
<td>3. Purse seine</td>
<td>8 599</td>
<td>515 291</td>
<td>6 891</td>
<td>611 464</td>
<td>7 300</td>
</tr>
<tr>
<td>7. Traps</td>
<td>47 757</td>
<td>217 090</td>
<td>45 096</td>
<td>221 870</td>
<td>61 722</td>
</tr>
<tr>
<td>8. Other gear</td>
<td>59 747</td>
<td>231 010</td>
<td>50 484</td>
<td>251 346</td>
<td>52 675</td>
</tr>
<tr>
<td>TOTAL</td>
<td>635 984</td>
<td>2 886 289</td>
<td>640 822</td>
<td>3 081 168</td>
<td>669 612</td>
</tr>
</tbody>
</table>

Source: Directorate General of Fisheries (DGF) 1998.
Characteristics of the Fishery Labor Force in Commercial Fisheries

Total Number of Fishers in Indonesia

The fishers population in Indonesia accounts for only 1% of the total labor force and has not changed significantly since 1990. Most of the fishers are working full-time (51.1% in 1997), part-time as major occupation (34.3%), and part-time as minor occupation (14.8%). A combination of fisheries, agriculture and traditional fish processing as a means of livelihood is common in the coastal villages of Indonesia.

Most fishing households have 4 - 5 family members working in non-fishing activities. In 1997, 49.4% of the fishing population were owners of non-powered boats used for large scale fishing, 22.3% had boats with outboard engines, 16.8% had inboard engines and 11.5% did not have boats. As regards marine fishing, during 1988 - 97, 60.6% of the fishers had non-powered boats, 23.2% owned boats with outboard engines, and 16.2% owned boats with inboard engines.

Table 7. Total number of fishers (full-time and part-time) in Indonesia from 1988 to 1997.

<table>
<thead>
<tr>
<th>Year</th>
<th>Total Fishers</th>
<th>Full-time</th>
<th>Part-time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Major</td>
<td>Minor</td>
</tr>
<tr>
<td>1988</td>
<td>1 417 000</td>
<td>702 000</td>
<td>525 000</td>
</tr>
<tr>
<td>1989</td>
<td>1 464 000</td>
<td>727 000</td>
<td>540 000</td>
</tr>
<tr>
<td>1990</td>
<td>1 524 000</td>
<td>755 000</td>
<td>564 000</td>
</tr>
<tr>
<td>1991</td>
<td>1 633 000</td>
<td>817 000</td>
<td>618 000</td>
</tr>
<tr>
<td>1992</td>
<td>1 742 000</td>
<td>859 000</td>
<td>619 000</td>
</tr>
<tr>
<td>1993</td>
<td>1 890 000</td>
<td>937 000</td>
<td>667 000</td>
</tr>
<tr>
<td>1994</td>
<td>1 850 000</td>
<td>925 000</td>
<td>648 000</td>
</tr>
<tr>
<td>1995</td>
<td>1 958 000</td>
<td>979 000</td>
<td>686 000</td>
</tr>
<tr>
<td>1996</td>
<td>2 055 000</td>
<td>1 037 000</td>
<td>713 000</td>
</tr>
<tr>
<td>1997</td>
<td>2 088 000</td>
<td>1 067 000</td>
<td>717 000</td>
</tr>
</tbody>
</table>

Source: Directorate General of Fisheries (DGF) 1998.

Table 8. Total fishing households and fishing population using various fishing vessels in Indonesia from 1988 to 1997.

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of fishing households</th>
<th>Without boat</th>
<th>Population per fishing vessels</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Non-powered boats</td>
</tr>
<tr>
<td>1988</td>
<td>356 000</td>
<td>53 000</td>
<td>202 000</td>
</tr>
<tr>
<td>1989</td>
<td>258 000</td>
<td>45 000</td>
<td>208 000</td>
</tr>
<tr>
<td>1990</td>
<td>380 000</td>
<td>53 000</td>
<td>216 000</td>
</tr>
<tr>
<td>1991</td>
<td>377 000</td>
<td>44 000</td>
<td>216 000</td>
</tr>
<tr>
<td>1992</td>
<td>406 000</td>
<td>60 000</td>
<td>225 000</td>
</tr>
<tr>
<td>1993</td>
<td>426 000</td>
<td>53 000</td>
<td>231 000</td>
</tr>
<tr>
<td>1994</td>
<td>426 000</td>
<td>57 000</td>
<td>232 000</td>
</tr>
<tr>
<td>1995</td>
<td>436 000</td>
<td>58 000</td>
<td>228 000</td>
</tr>
<tr>
<td>1996</td>
<td>450 000</td>
<td>55 000</td>
<td>240 000</td>
</tr>
<tr>
<td>1997</td>
<td>435 000</td>
<td>50 000</td>
<td>215 000</td>
</tr>
</tbody>
</table>

Source: Directorate General of Fisheries (DGF) 1998.
Effect of Development Interventions, Investment and Other Trends in Coastal Communities

Fishing communities in Indonesia exploit fishery resources in the fishing grounds close to their home base, particularly in the coastal areas. Thus, over-exploitation of fisheries resources in Indonesia is mainly in the Java Sea and Malacca Strait. Fishery resources in the eastern part of Indonesia, mostly in the offshore zone and EEZ, are considered to be under-exploited. Except in the Arafura Sea, where the targeted fishing is shrimp trawling, the fishery resources in the eastern part seem to be very close to over-fishing conditions. Generally, the issues of developing marine fisheries in the eastern part of Indonesia lack human skilled resources, limited availability and capacity of capital and fisheries infrastructure, and a low level of demand. The demand for fish is very high in the western part of Indonesia, especially in Java and Sumatra, contributing to a higher GRDP. The supply of fish is relatively more abundant in the eastern part of Indonesia. This situation creates several problems such as: (1) transportation costs, (very expensive), (2) processing development in the eastern part of Indonesia, (3) lack of infrastructure, (4) insufficient or lack of training and extension and (5) requires more research and development.

The large scale fishing fleet is usually more efficient than the small scale fishing fleet if the target species is a highly valuable fisheries commodity such as shrimp, tuna and skipjack and demersal fishes. The government of Indonesia is exerting efforts to closely manage the coastal fishing zones, but the marine fishery is an open-access one. This is due to ineffective monitoring, and lack of compliance, supervision and enforcement of regulations. Consequently, there is competition among the various fishing groups, large scale vs. large scale. In most cases, the large scale fishers are the less effective.

The National Scientific Committee on the Assessment of Marine Fishery Resources has studied the level of utilization of fishery resources (Table 10). Other issues on the utilization of fishery resources are functions of recruitment, growth, harvesting and natural mortality.

Deteriorating environmental conditions can reduce recruitment and growth rates and intensify mortality rates. Unfortunately, there is continuous degradation of the environment due to natural occurrences and human interventions that threaten the sustainability of the coastal ecosystem and the fishery resources.

Table 9. Classification and number of marine fishing boats in Indonesia from 1991 to 1995.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Non-powered boat</td>
<td>231 659</td>
<td>229 377</td>
<td>247 745</td>
<td>245 486</td>
<td>245 162</td>
<td>1.49%</td>
</tr>
<tr>
<td>Powered boat</td>
<td>123 125</td>
<td>129 529</td>
<td>141 753</td>
<td>150 699</td>
<td>159 491</td>
<td>6.70%</td>
</tr>
<tr>
<td>2. Outboard engines</td>
<td>75 416</td>
<td>77 779</td>
<td>82 217</td>
<td>87 749</td>
<td>94 024</td>
<td>5.68%</td>
</tr>
<tr>
<td>Inboard engines</td>
<td>47 709</td>
<td>51 750</td>
<td>59 536</td>
<td>62 950</td>
<td>65 467</td>
<td>8.31%</td>
</tr>
<tr>
<td>3. Boats according to size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 5 GT</td>
<td>35 179</td>
<td>37 913</td>
<td>43 396</td>
<td>45 331</td>
<td>48 855</td>
<td>8.62%</td>
</tr>
<tr>
<td>5 - 10 GT</td>
<td>7 391</td>
<td>7 936</td>
<td>9 791</td>
<td>9 604</td>
<td>9 562</td>
<td>7.10%</td>
</tr>
<tr>
<td>10 - 20 GT</td>
<td>2 726</td>
<td>3 156</td>
<td>2 812</td>
<td>3 376</td>
<td>3 789</td>
<td>1.89%</td>
</tr>
<tr>
<td>20 - 30 GT</td>
<td>909</td>
<td>984</td>
<td>1 558</td>
<td>1 688</td>
<td>1 519</td>
<td>16.23%</td>
</tr>
<tr>
<td>30 - 50 GT</td>
<td>738</td>
<td>1 049</td>
<td>1 170</td>
<td>1 869</td>
<td>1 682</td>
<td>25.85%</td>
</tr>
<tr>
<td>50 - 100 GT</td>
<td>185</td>
<td>208</td>
<td>351</td>
<td>567</td>
<td>687</td>
<td>40.97%</td>
</tr>
<tr>
<td>100 - 200 GT</td>
<td>272</td>
<td>184</td>
<td>213</td>
<td>340</td>
<td>253</td>
<td>4.36%</td>
</tr>
<tr>
<td>> 200 GT</td>
<td>309</td>
<td>320</td>
<td>245</td>
<td>175</td>
<td>120</td>
<td>-19.97%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>354 784</td>
<td>358 906</td>
<td>389 185</td>
<td>396 185</td>
<td>404 653</td>
<td>3.38%</td>
</tr>
</tbody>
</table>

Source: Directorate General of Fisheries (DGF) 1998.
Fleet Operational Dynamics
The State of the Fishing Fleet

The study covered six districts in the northern part of Java. It was based on questionnaires and interviews from the boat owners or the skippers.

Since the declaration of Presidential Decree (Keppres No. 39/80) that banned trawl operations in Indonesian waters, except in the Arafura Sea, many fishers have modified the trawl into traditional gear such as *arad*, *cantrang*, *dogol*, *lampara dasar*, gillnet and others. This traditional gear also captures demersal and bottom fishes and is operated similarly to the traditional trawlers with some modifications.

The socioeconomic variables of demersal fishing were studied in the northern part of Java. Respondents were selected by the type of fishing gear they operate. There were twelve different types of gear for fish, shrimp, molluscs, squid and crabs. These are (1) shrimp-trawl, (2) *payang/dogol* (Danish seine A), (3) *arad* (Danish seine B), (4) *pukat pantai* (beach seine), (5) *jaring klitik* (monofilament gillnet), (6) *jaring insang tetap* (set gillnet), (7) trammel net, (8) *bagan tancap* (stationary lift-net), (9) *rawai tetap* (traditional long-line), (10) *cantrang* (Danish seine C), (11) mini purse seine, and (12) large purse seine. In every area, at least one to two respondents were chosen for each type of gear. For the shrimp-trawl, data for production efficiency were collected through logbook fisheries in the Arafura Sea.

Stratified random sampling was chosen to include the different qualitative measures between location and technology. Table 11 presents the number of respondents per area. During the study in the northern part of Java, the total samples covered 46 unit vessels. However, these were incomplete data sets that made the cost and return analysis and the production function of demersal fisheries difficult to estimate.

Table 10. Maximum sustainable yield (MSY) and production of marine fisheries of Indonesia in 1997.

<table>
<thead>
<tr>
<th>Commodities</th>
<th>Resource potential (t)</th>
<th>Total Production (t)</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Small pelagic</td>
<td>3 235.8</td>
<td>1 415</td>
<td>43.73%</td>
</tr>
<tr>
<td>2. Large pelagic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Tuna</td>
<td>1 053.5</td>
<td>364</td>
<td>34.55%</td>
</tr>
<tr>
<td>- Skipjack</td>
<td>223.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- King mackerel</td>
<td>392.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Eastern little tuna</td>
<td>150.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Billfish</td>
<td>235.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Demersal</td>
<td>1 786.4</td>
<td>1 087</td>
<td>60.85%</td>
</tr>
<tr>
<td>4. Shrimp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Penaeid</td>
<td>78.6</td>
<td>70</td>
<td>94.85%</td>
</tr>
<tr>
<td>- Lobster</td>
<td>73.8</td>
<td>2</td>
<td>41.67%</td>
</tr>
<tr>
<td>5. Squid</td>
<td>28.3</td>
<td>22</td>
<td>77.74%</td>
</tr>
<tr>
<td>6. Coral fishes</td>
<td>76.0</td>
<td>93</td>
<td>122.00%</td>
</tr>
<tr>
<td>7. Ornamental fishes*</td>
<td>1.5 x 1 000 000</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>TOTAL</td>
<td>6 285</td>
<td>3 803</td>
<td>60.51%</td>
</tr>
</tbody>
</table>

Note: * = Number of individuals; N/A = Not available.
Vessels, Engine and the Fishing Grounds

The large scale fishing vessels range between 7 - 34 GT with 10 - 160 HP engines and employ 3 - 10 crew, except beach seines and mini purse seine which are more labor-intensive using 25 - 34 crew members. They mostly fish in the coastal areas of the Java Sea leading to a highly crowded fishing ground. The average total number of boats per gear is nearly 3,959 units or an equivalent of 47,503 units for all fishing gear operating in the northern part of Java. The large scale boats operate for 1 - 12 days/trip at a distance of 1 - 30 miles. The exception is mini purse seine vessels, which sometimes travel up to 60 miles from the fishing-base to capture scads, Sardinella, Indian mackerel, trevallies, etc.

A boat’s average CPUE (catch per unit effort) (catch/craft/day) is between 90 - 488 kg which is composed of ikan sebelah (Indian halibut), peperel (pony fishes), manyung (sea catfishes), bambahangan (red snapper), kerapu (groupers), kakap (giant perch), tiga waja (druns), cicut (shark), pari (rays), bawal hitam/putih (black/silver pomfret), alu-alu (barracuda), layang (scads), selar (trevallies), tembang (Sardinella), lemuru (Sardinella longiceps), kembung (Indian mackerel), tenggiri (mackerel), layur (hairtails), tongkol (eastern little tuna), rajungan (crabs), udang dogol (Metapenaeus spp), udang putih (white shrimp), cumi-cumi (squids), and sotong (cuttle fish).

The large purse seine vessels employ 39 crew members, are constructed of wood, have an average size of 96 GT and have 325 HP engines. These vessels are capable of operating from their Pekalongan fishing-base to the South China Sea (in the west) and Masalembu Island and Makasar Strait in the east. Amazingly, boats are able to capture on the average 32,168 kg·trip⁻¹. Thus, with an average per trip of 30 days, CPUE of the large purse seine can be up to 1,072 kg, composed mostly of scads, Sardinella, Indian mackerel, trevallies and others.

The shrimp-trawl represents the large scale fishery using 17 - 18 crew, larger boats of 193 GT and 597 HP engines and are constructed of steel/fiberglass. These vessels are capable of operating from their Ambon and Sorong fishing bases to the Arafura Sea, near Dolak Island at the southern part of Merauke. The shrimp-trawl has the capacity to capture shrimp at an average of 13,772 kg and other fish at 20,657 kg·trip⁻¹. Since one trip is equivalent...
to 66 days on the average, catch/craft/day of the shrimp-trawl is 522 kg, including shrimp and other fish. Catch composition is mainly *udang dogol* (*Metapenaeus* spp), *udang putih* (white shrimp), *udang windu* (jumbo-tiger prawn), other shrimp and other fish. Log book data from P.T. Dwibina Utama showed that the catch composition covers 19.59% *Metapenaeus* spp, 13.84% white shrimp, 6.58% jumbo tiger prawn and 60% other shrimp and fishes. Tables 12 and 13 show information on the types of fishing gear and its operation and investment costs. The dominant fishing gear and species that are targeted by this gear in northern Java are presented in Table 14.

Table 12. Types of fishing gear and fishing operations in the northern part of Java in 2000.

<table>
<thead>
<tr>
<th>Types of fishing gear</th>
<th>Fishing distance from port (nm)</th>
<th>Man-power</th>
<th>days-trip (^1)</th>
<th>Fishing days/month (^1)</th>
<th>Fishing months/year (^1)</th>
<th>Catch (kg)</th>
<th>CPUE (kg)</th>
<th>No. of vessels in Northern Java</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Payang/Dogol (Danish seine A)</td>
<td>7</td>
<td>8</td>
<td>2</td>
<td>22</td>
<td>11</td>
<td>421</td>
<td>211</td>
<td>5 473</td>
</tr>
<tr>
<td>2. Beach seine</td>
<td>1 - 3</td>
<td>25</td>
<td>1</td>
<td>25</td>
<td>10</td>
<td>714</td>
<td>714</td>
<td>701</td>
</tr>
<tr>
<td>3. Mini purse seine</td>
<td>60</td>
<td>34</td>
<td>12</td>
<td>22</td>
<td>11</td>
<td>5 850</td>
<td>488</td>
<td>2 968</td>
</tr>
<tr>
<td>4. Monofilament-gillnet</td>
<td>7</td>
<td>4</td>
<td>1</td>
<td>25</td>
<td>10</td>
<td>116</td>
<td>116</td>
<td>8 434</td>
</tr>
<tr>
<td>5. Gillnet (JIT)</td>
<td>3 - 12</td>
<td>7</td>
<td>4</td>
<td>25</td>
<td>11</td>
<td>360</td>
<td>90</td>
<td>4 464</td>
</tr>
<tr>
<td>6. Bagan tancaj (Stationary lift-net)</td>
<td>1 - 3</td>
<td>3</td>
<td>1</td>
<td>25</td>
<td>10</td>
<td>114</td>
<td>114</td>
<td>1 244</td>
</tr>
<tr>
<td>7. Conrang (Danish seine C)</td>
<td>3 - 6</td>
<td>7</td>
<td>2</td>
<td>25</td>
<td>11</td>
<td>960</td>
<td>480</td>
<td>2 598</td>
</tr>
<tr>
<td>8. Bottom - longline</td>
<td>30</td>
<td>5</td>
<td>7</td>
<td>22</td>
<td>11</td>
<td>655</td>
<td>116</td>
<td>844</td>
</tr>
<tr>
<td>9. Large purse seine</td>
<td>100 - 400</td>
<td>39</td>
<td>30</td>
<td>24</td>
<td>10</td>
<td>32 168</td>
<td>1 072</td>
<td>297</td>
</tr>
<tr>
<td>10. Shrimp trawl</td>
<td>400 - 500</td>
<td>17 - 18</td>
<td>60</td>
<td>28</td>
<td>10</td>
<td>14 044</td>
<td>234</td>
<td>6306</td>
</tr>
<tr>
<td>11. Arad (Danish seine B)</td>
<td>7</td>
<td>5</td>
<td>1 - 3</td>
<td>25</td>
<td>10</td>
<td>371</td>
<td>185</td>
<td>5 473</td>
</tr>
<tr>
<td>12. Trammel net</td>
<td>12</td>
<td>10</td>
<td>1</td>
<td>30</td>
<td>10</td>
<td>200</td>
<td>200</td>
<td>14 401</td>
</tr>
<tr>
<td>Types of fishing gear</td>
<td>No. of vessels in Indonesia in 1997*</td>
<td>Average capital investment (in mil Rp)</td>
<td>Length of boats (m)</td>
<td>Tonnage (GT)</td>
<td>HP (PK)</td>
<td>Length of gear (m)</td>
<td>Mesh size (inch)</td>
<td>Fuel (t)</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------------------------------</td>
<td>--------------------------------------</td>
<td>---------------------</td>
<td>--------------</td>
<td>---------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>----------</td>
</tr>
<tr>
<td>1. Payang/Dogol (Danish seine A)</td>
<td>6,173</td>
<td>39.75</td>
<td>9-12</td>
<td>5</td>
<td>25-30</td>
<td>140-200</td>
<td>1-1.5</td>
<td>32.25</td>
</tr>
<tr>
<td>2. Beach seine</td>
<td>10,268</td>
<td>28.00</td>
<td>9-12</td>
<td>5</td>
<td>25</td>
<td>1500</td>
<td>1-1.75</td>
<td>6.37</td>
</tr>
<tr>
<td>3. Mini purse seine</td>
<td>24,200</td>
<td>224.00</td>
<td>15</td>
<td>34</td>
<td>160</td>
<td>810</td>
<td>1</td>
<td>76.20</td>
</tr>
<tr>
<td>4. Monofilament - gillnet</td>
<td>24,470</td>
<td>15.50</td>
<td>7</td>
<td>2-5</td>
<td>12-16</td>
<td>750</td>
<td>1.75</td>
<td>3.50</td>
</tr>
<tr>
<td>5. Gillnet (JIT)</td>
<td>58,129</td>
<td>45.00</td>
<td>11-12</td>
<td>10</td>
<td>65</td>
<td>4000</td>
<td>3-4</td>
<td>27.00</td>
</tr>
<tr>
<td>6. Bagan Tancap (Stationary lift-net)</td>
<td>11,738</td>
<td>11.50</td>
<td>6</td>
<td>3-4</td>
<td>10</td>
<td>6 x 6</td>
<td>1</td>
<td>1.16</td>
</tr>
<tr>
<td>7. Cantrang (Danish seine C)</td>
<td>N/A</td>
<td>200.00</td>
<td>13.75</td>
<td>20</td>
<td>100</td>
<td>145</td>
<td>1-2</td>
<td>41.50</td>
</tr>
<tr>
<td>8. Bottom - long-line</td>
<td>24,710</td>
<td>17.50</td>
<td>8</td>
<td>6</td>
<td>25</td>
<td>2500</td>
<td>-</td>
<td>9.85</td>
</tr>
<tr>
<td>9. Large purse seine</td>
<td>9,341</td>
<td>675.00</td>
<td>25</td>
<td>96</td>
<td>325</td>
<td>500</td>
<td>1-2</td>
<td>117.00</td>
</tr>
<tr>
<td>10. Shrimp trawl</td>
<td>1,387</td>
<td>4,500.00</td>
<td>26</td>
<td>193</td>
<td>597</td>
<td>274+warp</td>
<td>N/A</td>
<td>127.54</td>
</tr>
<tr>
<td>11. Arad (Danish seine B)</td>
<td>N/A</td>
<td>70.00</td>
<td>11.24</td>
<td>10-15</td>
<td>45-65</td>
<td>N/A</td>
<td>1-1.5</td>
<td>35</td>
</tr>
<tr>
<td>12. Trammel net</td>
<td>30,931</td>
<td>N/A</td>
<td>N/A</td>
<td>55</td>
<td>20</td>
<td>N/A</td>
<td>N/A</td>
<td>45</td>
</tr>
</tbody>
</table>

Source: *Directorate General of Fisheries (DGF), 1998; Field studies for Indramayu (West Java), Pemalang-Pekalong-Batatang (Central Java), and Brondong-Tuban (East Java).

1 US$ = 8,005 Rupiah (source: oanda.com)

Note: N/A = Not available.
Table 14. Target species captured by various fishing gear in Indonesia.

<table>
<thead>
<tr>
<th>Traditional bottom longline</th>
<th>Shrimp trawl</th>
<th>Danish seine</th>
<th>Beach seine</th>
<th>Mini purse seine</th>
<th>Monofilament gillnet and hand line</th>
<th>Gillnet (JIT) and hand line</th>
<th>Danish seine B (Cantrang)</th>
<th>Statutory lift-net</th>
<th>Large purse seine</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Rays</td>
<td>Metapenaeus spp</td>
<td>Drums</td>
<td>Yellowtail</td>
<td>Scads</td>
<td>Pony fishes</td>
<td>Mackerel</td>
<td>Pony fishes</td>
<td>Pony fishes</td>
<td>Scads</td>
</tr>
<tr>
<td>2. Shark</td>
<td>White shrimp</td>
<td>Hairtails</td>
<td>Drums</td>
<td>Indian mackerel</td>
<td>Ray</td>
<td>Giant-perch</td>
<td>Drums</td>
<td>Drums</td>
<td>Indian mackerel</td>
</tr>
<tr>
<td>3. Red snapper</td>
<td>Tiger shrimp</td>
<td>Finger scale Sardinella</td>
<td>Rays</td>
<td>Sardinella longiceps</td>
<td>Sea catfishes</td>
<td>Shark</td>
<td>Deep leatherskin</td>
<td>Eastern little tuna</td>
<td>Trevallies</td>
</tr>
<tr>
<td>4. Sea catfish</td>
<td>Other fishes</td>
<td>Barred garfish</td>
<td>Squids</td>
<td>Trevallies</td>
<td>Drums</td>
<td>Red snapper</td>
<td>Trevallies</td>
<td>Shark</td>
<td>Shark</td>
</tr>
<tr>
<td>5. Groupers</td>
<td>Common window-shell</td>
<td>Common window-shells</td>
<td>Barracuda</td>
<td>Sea Catfish</td>
<td>R. sardines</td>
<td>Hairtails</td>
<td>Sardinella longiceps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Hairtails</td>
<td>Rays</td>
<td></td>
<td></td>
<td>Silver pomfrets</td>
<td>Grouper</td>
<td>Squid</td>
<td>Squid</td>
<td>Rainbow Sardines</td>
<td></td>
</tr>
<tr>
<td>7. Giant perch</td>
<td>Squids</td>
<td></td>
<td></td>
<td>Metapenaeus</td>
<td></td>
<td>Cuttlefish</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Metapenaeus</td>
<td></td>
<td></td>
<td></td>
<td>Rays</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Shark</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Indian halibut</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Black pomfret</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Eastern little-tuna</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Sea catfishes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A description of the design and operation of each fishing gear is provided below.

a. **Cantrang** (Danish seine C) and **Dogol** (Danish seine A). The design and construction of the gear are similar to **payang** or **pukat kantong** that use an extra sinker. They encircle the fish school, tightening two edges with ropes and winches, which in turn help to pull out the net during adverse weather.

The differences between the trawl operations and the cantrang or dogol are:

- **trawl operations** are established in a straight line while **cantrang** or **dogol** encircle the fish school;
- **cantrang** is a modification of **dogol** in which the former utilizes small lengths of wood (± 6 metre length) such as in the beam trawl operation (Fig. 5 and 6);
- **dogols** have 5.5 - 13 GT and 10 - 18 HP engines while **cantrangs** have 15 - 37 GT with 16 - 40 HP engines. In the northern part of Java, the fishers who construct their fishing boats use teak wood and engines made by Dong Feng (China). Mitsubishi, Kubota, and Yanmar are the most popular brands of engine in the fishing villages but most fishers find their prices too expensive.
- **cantrang** or **dogol** boats use compass (diameter 15 - 25 cm) and winch/capstan; crews consist of skipper, engineer, and crew (6 - 7 persons); and
- **fish** captured by the **cantrang** or **dogol** include shrimp, gulamah, beloso, pepetek, kurisi, squid, red snapper and bawal putih.

Fig. 5. Danish seine C (cantrang) fishing gear used in Indonesia.

- a. assembly of the net.
- b. hauling the net.
b. *Arad* (Danish seine B). The design and construction of this net is similar to a beam trawl using an extra sinker. When the boat is moving forward, the net will be dredging the bottom thereby capturing the demersal fish (Fig. 7). The size of the vessel is 5.5 - 43 GT with 12 - 25 HP engines (Dong Feng, China) and the body is built of teak. The *arad* boats usually use compass (diameter 12 - 25 cm) and winch/capstan for pulling the net from the water. The fishing team consists of skipper, engineer and crew (5 persons). The species captured by the *arad* are shrimp, *beloso*, *pepetek*, *kurisi*, *keniran*, halibut, crab and sea cucumber.

c. *Rawai dasar* (Traditional bottom long-line). The design and construction is almost similar to a traditional long-line which is operated at the bottom of the sea. Vessel size ranges from 10 - 42 GT with engines of 10 - 95 HP (Kubota, Yanmar and Mitsubishi) while the body is of teak wood. The *Rawai dasar* uses compass and the fishing team is comprised of skipper, engineer and crew (6 persons). The fish species captured by this fishing gear are red snapper, groupers, *kurisi*, shark, stingrays, *manyung* and others.
Table 15. Summary of information on fishing gear operated in Indonesia in 1999.

<table>
<thead>
<tr>
<th>Item</th>
<th>Arad</th>
<th>Cantrang</th>
<th>Dogol</th>
<th>Gillnet</th>
<th>Rawai Dasar</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Vessel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. size (GT)</td>
<td>5.5 - 43</td>
<td>15 - 37</td>
<td>5.5 - 13</td>
<td>18 - 42</td>
<td>10 - 42</td>
</tr>
<tr>
<td>b. engine (HP)</td>
<td>12 - 25 (Dong Feng)</td>
<td>16 - 40 (Mitsubishi, Kubota, Yanmar)</td>
<td>10 - 18 (Dong Feng)</td>
<td>25 - 95 (Yanmar, Dong Feng)</td>
<td>10 - 95 (Mitsubishi, Kubota, Yanmar)</td>
</tr>
<tr>
<td>c. compass</td>
<td>Merk Seco O 15 - 25 cm</td>
<td>Seico/Honocon</td>
<td>Seico/ Columbus</td>
<td>Seico/ Honokon</td>
<td>Honokon</td>
</tr>
<tr>
<td>d. auxiliary gear</td>
<td>Capstan O 20 cm</td>
<td>Capstan O 25 cm</td>
<td>Capstan O 25cm</td>
<td>Capstan</td>
<td>–</td>
</tr>
<tr>
<td>e. winch,</td>
<td>–</td>
<td>Winch, SSB</td>
<td>–</td>
<td>Winch, SSB</td>
<td>–</td>
</tr>
<tr>
<td>2. No. of crew</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. skipper</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>b. engineer</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>c. crew</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>
Productivity and Technology Efficiency

Using 92 samples of cross-section data from large- and large scale boats, the Cobb-Douglas production function with the dummy variable for the groups was introduced in order to provide the best-fitted model. The catch per craft per day depends on the following variables: (1) total number of boats/gears operated in the area (JUK), (2) the distance from the fishing ground (JFG), (3) total manpower for each gear (MP), (4) the distance from the fishing ground (JFG), (5) the engine size (HP), (6) total volume of fuel consumed (FDAY) and (7) the dummy variable (D1) which captures the differences between large- and small scale boats or the differences between fishing areas or the efficiency differences between gears.

Cobb-Douglas Production Function

\[
\text{CPUE} = 774.78 \times \text{JFG}^{-0.1884} \times \text{JUK}^{-0.31057} \times \text{MP}^{0.747386} \times \text{RGTHP}^{0.3818} \times \text{FDAY}^{0.235585} \times \text{EXP}^{0.398295} \times D1
\]

(1)

\[
\begin{align*}
\text{t-test:} & \quad (7.043) \quad (-2.06) \quad (-2.64) \\
\text{MP} & \quad 0.747386 \times \text{RGTHP}^{0.3818} \\
& \quad (6.69) \quad (2.47) \\
\text{FDAY} & \quad 0.235585 \times \text{EXP}^{0.398295} \times D1 \\
& \quad (3.54) \quad (1.97)
\end{align*}
\]

\[R^2 = 0.78; \quad \text{Adjusted } R^2 = 0.76; \quad \text{F-test} = 49.05; \quad n = 92; \quad df = 85\]

where,

- \(\text{CPUE}\) = catch-craft\(^{-1}\)-day\(^{-1}\) for all gears, covering two kinds of fisheries namely,
 - The shrimp-trawl operated in the Arafura Sea (by assumption) captured 40% shrimp and 60% fish;
 - The payang/dogol, beach seines, purse seine, monofilament gillnet, stationary lift-net, \text{cantrang}, bottom long-line, set gillnet, and mini purse seine) can be separated as follows.

- \(\text{JFG}\) = distance of operation between the fishing base to the fishing ground
- \(\text{JUK}\) = total number of boats/gears
- \(\text{MP}\) = total number of manpower/gears
- \(\text{RGTHP}\) = ratio of gross tonnage to horse power
- \(\text{FDAY}\) = total volume of fuel/day

Dummy variable,

\[D_1 = 1, \text{ if the group is a large scale fishery, using } > 30 \text{ GT}\]

Results showed that all variables are statistically significant with F-test at 95% level of significance and an \(R^2\) of 78%. The distance of operations between the fishing base to fishing ground (JFG) and the total number of boats/gears (JUK) show negative results indicating that if the distance from fishing base to fishing ground becomes extensive or farther away, then the catch-craft\(^{-1}\)-day\(^{-1}\) will decline. Also an increase in the number of boats operating in the same fishing area reduces the catch-craft\(^{-1}\)-day\(^{-1}\). On the other hand, the total number of manpower/gears (MP), the ratio of gross tonnage to horsepower (RGTHP), total amount of fuel/day (FDAY) and \(D_1\) (dummy variable = 1, if the group is a large scale fishery, using > 30 GT) are positive, denoting that an increase in manpower of 10% increases the catch-craft\(^{-1}\)-day\(^{-1}\) by 7.47 t. In addition, an increase in the ratio of GT to HP by 10% raises the catch-craft\(^{-1}\)-day\(^{-1}\) by 3.82 t. Similarly, an increase in fuel/day by 10% increases the catch-craft\(^{-1}\)-day\(^{-1}\) by 2.36 t. The positive dummy variable indicates that the catch-craft\(^{-1}\)-day\(^{-1}\) of shrimp trawl for large scale fishing vessels is greater than that for small scale boats.

From the above model, the two groups of fishing vessels namely, \text{the large scale boats} (the shrimp-trawl and the large purse seine) and \text{the small scale boats} (the payang/dogol, beach seines, monofilament gillnet, stationary lift-net, \text{cantrang}, bottom long-line, set gillnet, and mini purse seine) can be separated as follows.

\[\text{a. The small scale fishing vessel production function for the average product of effort (CPUE):} \]

\[
\text{CPUE}_s = 774.78 \times \text{JFG}^{-0.1884} \times \text{JUK}^{-0.31057} \times \text{MP}^{0.747386} \times \text{RGTHP}^{0.3818} \times \text{FDAY}^{0.235585}
\]

(2)

\[\text{b. The large scale fishing vessel production function:} \]

\[
\text{CPUE}_l = 777.28 \times \text{JFG}^{-0.1884} \times \text{JUK}^{-0.31057} \times \text{MP}^{0.747386} \times \text{RGTHP}^{0.3818} \times \text{FDAY}^{0.235585}
\]

(3)
These two groups of production function show that the slope for all variables is the same while the intercepts differ. Hence, if the individuals use the same number of inputs, the catch-craft⁻¹-day⁻¹ of large scale vessels is greater than the large scale. This may be due to the use of better technology by large scale boats (gross tonnage, horsepower, gear, etc.) compared to small scale.

Both vessel size classes have returns to scale = 0.865881 < 1. This result indicates that both fishing vessels are at the “decreasing return to scale” condition wherein if all inputs of production are increased by 10% then the output of production will increase by less than 10%. This situation is very close to the “flat and mature” condition.

Assuming that the total number of boats (JUK), total number of manpower (MP) and total volume of fuel/day (FDAY) were considered as important variables in the model while others are considered as “ceteris paribus”, then using the production efficiency analysis the results will be as follows:

a. large scale fishing vessels

\[
\frac{MP_{JUK}}{P_{JUK}} = \frac{MP_{FDAY}}{F_{DAY}} = \frac{MP_{MP}}{P_{MP}}
\]

\[
\frac{0.10308584}{JUK} = \frac{0.00362438462}{FDAY} = \frac{0.24006472}{MP}
\]

\[
2.3288 \text{ (JUK)} = 66.23594 \text{ (FDAY)} = 1 \text{ (MP)}
\]

(4)

<table>
<thead>
<tr>
<th>Item</th>
<th>Combination factor production</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MP</td>
</tr>
<tr>
<td>a. Large scale boats</td>
<td></td>
</tr>
<tr>
<td>- At optimal condition</td>
<td>1</td>
</tr>
<tr>
<td>- Combination input production at this period</td>
<td>1</td>
</tr>
<tr>
<td>b. Large scale boats</td>
<td></td>
</tr>
<tr>
<td>- At optimal condition</td>
<td>1</td>
</tr>
<tr>
<td>- Combination input production at this period</td>
<td>1</td>
</tr>
</tbody>
</table>
Costs, Earnings and Profitability
Investment Costs

In terms of capital investment, shrimp-trawls and large purse seines require the biggest capital investment. Shrimp-trawl, Danish seine B (arad), large purse seine and Danish seine C (cantrang) are capital-intensive gear. The payback period usually exceeds 35 months (> 3 years), especially for the shrimp-trawl, gillnet, bottom long-line, Danish seine B (arad) and large purse seine gear. Mini purse seine, beach seine, monofilament gillnet and Danish seine A (payang/dogol) are less capital intensive and more profitable (benefit-cost ratio higher). The characteristics of each fishing gear are presented in Table 17.

Table 17. Investment costs of the different fishing boats/gear operated in Indonesia in 2000.

<table>
<thead>
<tr>
<th>Boat/Gear</th>
<th>No. of vessels</th>
<th>Capital Investment (in million Rp)</th>
<th>Ratio Capital Productivity</th>
<th>Ratio Capital Intensity (Rp/Craft)</th>
<th>B/C benefit/cost ratio</th>
<th>Payback periods (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indonesia (1997)</td>
<td>North Java</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Danish seine A (Payang/Dogol)</td>
<td>6 173</td>
<td>5 473</td>
<td>3 975</td>
<td>0.36</td>
<td>2 656</td>
<td>1.48</td>
</tr>
<tr>
<td>2. Beach seine</td>
<td>10 268</td>
<td>701</td>
<td>2 800</td>
<td>0.78</td>
<td>685</td>
<td>1.53</td>
</tr>
<tr>
<td>3. Mini purse seine</td>
<td>24 200</td>
<td>2 968</td>
<td>22 400</td>
<td>0.45</td>
<td>3 824</td>
<td>1.66</td>
</tr>
<tr>
<td>4. Monofilament Gillnet</td>
<td>24 470</td>
<td>8 434</td>
<td>1 550</td>
<td>0.48</td>
<td>2 500</td>
<td>1.53</td>
</tr>
<tr>
<td>5. Gillnet (JIT)</td>
<td>58 129</td>
<td>4 464</td>
<td>4 500</td>
<td>0.15</td>
<td>3 929</td>
<td>1.41</td>
</tr>
<tr>
<td>6. Stationary lift-net</td>
<td>11 738</td>
<td>1 244</td>
<td>1 150</td>
<td>0.49</td>
<td>2 639</td>
<td>1.45</td>
</tr>
<tr>
<td>7. Danish seine C (Cantrang)</td>
<td>N/A</td>
<td>2 598</td>
<td>20 000</td>
<td>0.51</td>
<td>16 369</td>
<td>1.19</td>
</tr>
<tr>
<td>8. Bottom long line</td>
<td>24 710</td>
<td>844</td>
<td>1 750</td>
<td>0.28</td>
<td>1 983</td>
<td>1.28</td>
</tr>
<tr>
<td>9. Large purse seine</td>
<td>9 341</td>
<td>297</td>
<td>67 500</td>
<td>0.35</td>
<td>8 547</td>
<td>1.26</td>
</tr>
<tr>
<td>10. Danish seine B (Arab)</td>
<td>N/A</td>
<td>5 473</td>
<td>7 000</td>
<td>0.31</td>
<td>8 167</td>
<td>1.28</td>
</tr>
<tr>
<td>11. Trammel net</td>
<td>30 931</td>
<td>14 401</td>
<td>N/A</td>
<td>–</td>
<td>–</td>
<td>1.17</td>
</tr>
<tr>
<td>12. Shrimp trawl</td>
<td>1 387</td>
<td>–</td>
<td>4 500</td>
<td>0.08</td>
<td>69 450</td>
<td>1.30</td>
</tr>
</tbody>
</table>

N/A = not available
1 US$ = 9,725 Rupiah in 2000; source: oanda.com

Cost Structure

The total variable cost of all operations averages 87.68% of the total cost with 67% for the labor cost. The shrimp-trawl, mini purse seine, Danish seine A and Danish seine B vessels operate at further areas, so that they have higher running costs. The shrimp-trawl, Danish seine B, large purse seine and mini purse seine vessels have higher fixed costs since they have more equipment and engine to operate. The beach seine, monofilament gillnet, bottom long-line and stationary lift-net have higher labor costs, with the exception of the large purse seine, which usually operates in areas such as from Pekalongan/Juwana to the South China Sea in the west and Makassar Strait in the east. The total fixed cost is larger than the running cost for these. Fishing vessels with 96 GT and 325 HP engines may be considered as capital intensive. Table 18 shows the cost structures for each type of fishing gear.
Earnings and Profitability
Cost and Return of Fishing Gear in the Northern Part of Java

Costs and returns of payang/dogol (Danish seine A), pukat pantai (beach seine), mini purse seine, jaring klitik (monofilament gillnet), JIT (set gillnet), bagan tancap (stationary lift-net), cantrang (Danish seine C), rawai dasar (bottom long-line) and large purse seine were calculated based on the average values of each different gear in the six districts of the study.

The information varies depending on the season (dry and rainy), however the data were gathered during the dry season. If pooling of cross section and time series were available, the result of the analysis would be more accurate.

Financial results of cost-and-return analysis are reported in Table 19. The earnings after tax (EAT) range from Rp 19 000 000-year\(^{-1}\) for the bottom long-line to Rp 160 890 000-year\(^{-1}\) for large purse seines. The budget financial analysis was calculated using several assumptions including:

1. each fishing vessel has an economic lifetime of ten years and after five years the main engine, auxiliary engine and the gear should be replaced;
2. profits diminish by 15% after the sixth year;
3. in the tenth year, salvage values are added to the profit where the salvage value is 10% of the capital investment.

Using the above assumptions, the estimated cash flow can be established (Table 19).

With the exception of cantrang (Danish seine type C), all fishing vessels are profitable at the interest rate \(r = 27\%\) (Table 20). If the fisheries activities are assumed to have a “medium risk” (risk factor + 10% and the existing interest rate = 27%) then we can conclude that:

1. Danish seine A, beach seine, mini purse seine, monofilament gillnet, set gillnet, stationary lift-net, bottom long-line and large purse seine are profitable and investment feasible (assumption: if boat type is profitable NPV \((r = 27\%)\) should be positive and if feasible the internal rate of return IRR > 37%);
2. Danish seine C is not profitable and thus investment not feasible
3. Payback period (PP) showed that Danish seine A, beach seine, mini purse seine, monofilament gillnet, set gillnet, stationary lift-net and bottom long-line were considered as “quick yielding” while others like large purse seines and Danish seine C need longer time periods to recover capital investment.

Table 18. Cost structure for various fishing gear/boats in Indonesia in 1999.

<table>
<thead>
<tr>
<th>Items</th>
<th>Fishing Vessel/Gear Indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Danish seine A</td>
</tr>
<tr>
<td>1. Total Variable Cost (%)</td>
<td>94.50</td>
</tr>
<tr>
<td>Running cost</td>
<td>19.38</td>
</tr>
<tr>
<td>Labor cost</td>
<td>70.67</td>
</tr>
<tr>
<td>Share cost</td>
<td>4.45</td>
</tr>
<tr>
<td>2. Total Fixed Cost (%)</td>
<td>5.50</td>
</tr>
<tr>
<td>Total Cost (%)</td>
<td>100</td>
</tr>
<tr>
<td>In Cash (Rp Million)</td>
<td>141.70</td>
</tr>
</tbody>
</table>

1 US$ = 7150 Rupiah in 1999; source: oanda.com

<table>
<thead>
<tr>
<th>Fishing vessel/gear indicators</th>
<th>Payang/Dogol</th>
<th>Beach seine</th>
<th>Mini purse seine</th>
<th>Monofilament gillnet</th>
<th>Gillnet (JIT)</th>
<th>Bagan tancap</th>
<th>Cantrang</th>
<th>Bottom Long-line</th>
<th>Large purse seine</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Total Variable Cost (million Rupiah)</td>
<td>133.91</td>
<td>213.01</td>
<td>224.32</td>
<td>54.45</td>
<td>156.98</td>
<td>51.73</td>
<td>192.89</td>
<td>77.12</td>
<td>625.05</td>
</tr>
<tr>
<td>a. Running cost</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Fuel and oil</td>
<td>22.99</td>
<td>6.07</td>
<td>53.81</td>
<td>3.28</td>
<td>18.83</td>
<td>1.25</td>
<td>31.63</td>
<td>8.40</td>
<td>79.57</td>
</tr>
<tr>
<td>- Ice</td>
<td>1.89</td>
<td>-</td>
<td>3.63</td>
<td>1.16</td>
<td>2.45</td>
<td>-</td>
<td>2.74</td>
<td>0.70</td>
<td>2.88</td>
</tr>
<tr>
<td>- Other (kerosene, water, daily repairs and administration cost)</td>
<td>2.58</td>
<td>1.84</td>
<td>4.14</td>
<td>0.95</td>
<td>0.27</td>
<td>6.97</td>
<td>5.58</td>
<td>1.11</td>
<td>12.11</td>
</tr>
<tr>
<td>b. Labor cost</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Total labor (in cash)</td>
<td>73.04</td>
<td>138.32</td>
<td>79.60</td>
<td>35.56</td>
<td>97.68</td>
<td>32.80</td>
<td>116.73</td>
<td>44.62</td>
<td>429.69</td>
</tr>
<tr>
<td>- Total labor (in kind)</td>
<td>9.60</td>
<td>36.00</td>
<td>36.00</td>
<td>4.80</td>
<td>8.58</td>
<td>4.35</td>
<td>8.40</td>
<td>6.00</td>
<td>46.80</td>
</tr>
<tr>
<td>- Food</td>
<td>17.51</td>
<td>20.63</td>
<td>35.50</td>
<td>6.00</td>
<td>13.6</td>
<td>3.92</td>
<td>19.75</td>
<td>13.16</td>
<td>26.36</td>
</tr>
<tr>
<td>c. Share cost</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- traditional taxes and fee</td>
<td>6.30</td>
<td>10.15</td>
<td>11.64</td>
<td>2.70</td>
<td>7.11</td>
<td>2.44</td>
<td>8.06</td>
<td>3.13</td>
<td>27.64</td>
</tr>
<tr>
<td>2. Total Fixed Cost (million Rupiah)</td>
<td>7.79</td>
<td>8.20</td>
<td>38.84</td>
<td>3.85</td>
<td>10.60</td>
<td>4.56</td>
<td>33.55</td>
<td>4.73</td>
<td>107.00</td>
</tr>
<tr>
<td>a. Depreciation cost</td>
<td>5.10</td>
<td>3.95</td>
<td>31.20</td>
<td>2.40</td>
<td>6.60</td>
<td>1.90</td>
<td>27.50</td>
<td>2.38</td>
<td>80.00</td>
</tr>
<tr>
<td>b. Annual repairs and maintenance</td>
<td>2.64</td>
<td>4.20</td>
<td>7.50</td>
<td>1.40</td>
<td>3.90</td>
<td>2.61</td>
<td>6.00</td>
<td>2.35</td>
<td>26.00</td>
</tr>
<tr>
<td>c. Annual fishing fees</td>
<td>0.05</td>
<td>0.05</td>
<td>0.14</td>
<td>0.05</td>
<td>0.10</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>1.00</td>
</tr>
<tr>
<td>3. Total Cost (million Rupiah)</td>
<td>141.70</td>
<td>221.21</td>
<td>263.16</td>
<td>58.30</td>
<td>167.58</td>
<td>56.29</td>
<td>226.44</td>
<td>81.85</td>
<td>732.05</td>
</tr>
<tr>
<td>4. Total Revenues (million Rupiah)</td>
<td>209.89</td>
<td>338.16</td>
<td>436.82</td>
<td>89.20</td>
<td>236.76</td>
<td>81.39</td>
<td>268.73</td>
<td>104.31</td>
<td>921.33</td>
</tr>
<tr>
<td>5. Gross Profit (million Rupiah)</td>
<td>68.19</td>
<td>116.95</td>
<td>173.62</td>
<td>30.90</td>
<td>69.18</td>
<td>25.10</td>
<td>42.29</td>
<td>22.46</td>
<td>1889.28</td>
</tr>
<tr>
<td>6. EAT</td>
<td>57.96</td>
<td>99.41</td>
<td>147.61</td>
<td>26.27</td>
<td>58.80</td>
<td>21.34</td>
<td>35.95</td>
<td>19.10</td>
<td>160.89</td>
</tr>
</tbody>
</table>

Table 20. Economic characteristics of the fishing fleet in Indonesia in 1999.

<table>
<thead>
<tr>
<th>Items</th>
<th>Danish seine A</th>
<th>Beach seine</th>
<th>Mini purse seine</th>
<th>Monofilament gear</th>
<th>Danish seine C</th>
<th>Set Gillnet</th>
<th>Statutory Lift-net</th>
<th>Bottom Long-line</th>
<th>Large purse seine</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. EAT</td>
<td>63.06</td>
<td>103.36</td>
<td>178.81</td>
<td>28.67</td>
<td>65.40</td>
<td>23.24</td>
<td>63.45</td>
<td>21.48</td>
<td>240.89</td>
</tr>
<tr>
<td>2. NPV (r = 27%)</td>
<td>129.31</td>
<td>244.637</td>
<td>276.74</td>
<td>60.23</td>
<td>9.90</td>
<td>133.45</td>
<td>50.39</td>
<td>40.38</td>
<td>66.27</td>
</tr>
<tr>
<td>3. IRR (%)</td>
<td>158</td>
<td>369</td>
<td>78</td>
<td>184</td>
<td>25</td>
<td>145</td>
<td>202</td>
<td>122</td>
<td>31</td>
</tr>
<tr>
<td>4. Payback-period (mo)</td>
<td>8</td>
<td>16</td>
<td>16</td>
<td>2</td>
<td>40</td>
<td>8</td>
<td>6</td>
<td>10</td>
<td>35</td>
</tr>
</tbody>
</table>
The Sharing System

The sharing pattern for earnings was almost the same for the different craft-gear, the details of which are provided below.

(Option 1)
Crew share = 50% \(\text{Total Revenue} - (\text{Running costs} + \text{Share costs} + \text{Food} + \text{Total labor in “kind”})\)
Owner of gear and vessel gets the same as the crew

(Option 2)
In other places, the crew’s share is 40% and the share of the owner of gear and boats is 60%

(Option 3)
For some fishing gear such as Danish seine A (payang/dogol), mini purse seine, Danish seine C (cantrang) and large purse seine, the owner of the fishing vessel and gear also provides a bonus (5 - 10% out of his share) to the captain and engineer. This is done to show appreciation to the captain and engineer for the profits made each trip. In many areas, after several years of experience on fishing vessels, one can establish oneself as the owner of a brand-new or second-hand fishing vessel.

Cost efficiency and cost effectiveness of fishing vessels

Using annual cost-and-return data, the B/C ratio analysis shows that all fishing vessel types are profitable. However, this calculation is not made over the entire economic-life of the boat, the engineer, and the gear. The B/C ratio value is calculated only for that year where the present value (NPV), internal rate of return (IRR) and payback period (PP) presented for this study are more favourable than the first. Table 21 presents a comparison of the fishing gear in terms of B/C ratio (“annual”- cost efficiency), NPV (total profit of boat’s economic-life time), IRR (profit efficiency of boat’s economic-life time) and PP capital recovery. Beach seine, stationary lift-net, monofilament gillnet and Danish seine A are cost- and profit-efficient fishing gear while large purse seine and Danish seine C are not. Results from this study indicated that the large purse seine and Danish seine C are considered as capital-intensive vessels compared to the others. Also, Danish seine C and beach seine are labor-intensive and capital-productive (Tables 21 and 22).

Together with the set-gillnet and shrimp-trawl, the mini purse seine is the least labor productive in contrast to the Danish seine C, which is the most labor productive. The set gillnet is the least capital productive while beach seines and stationary lift-nets are the most capital productive (Table 23).

<table>
<thead>
<tr>
<th>Item</th>
<th>Danish seine A</th>
<th>Beach seine</th>
<th>Mini purse seine</th>
<th>Monofilament gear</th>
<th>Danish seine C</th>
<th>Set Gillnet</th>
<th>Statutory Lift-net</th>
<th>Bottom Long-line</th>
<th>Large purse seine</th>
</tr>
</thead>
<tbody>
<tr>
<td>B/C analysis</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>9</td>
<td>6</td>
<td>5</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>NPV analysis</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>9</td>
<td>3</td>
<td>7</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>IRR analysis</td>
<td>4</td>
<td>1</td>
<td>7</td>
<td>3</td>
<td>8</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>PP analysis</td>
<td>4</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td>9</td>
<td>4</td>
<td>3</td>
<td>6</td>
<td>8</td>
</tr>
</tbody>
</table>
Table 22. Cost efficiency and effectiveness of fishing vessels in Indonesia.

<table>
<thead>
<tr>
<th>No.</th>
<th>Type of Gear</th>
<th>Rank</th>
<th>Capital Intensity (Rp)</th>
<th>Cost Effectiveness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Catch/TVC</td>
</tr>
<tr>
<td>1.</td>
<td>Payang/Dogol (Danish seine A)</td>
<td>5/4</td>
<td>2 656.00</td>
<td>0.38</td>
</tr>
<tr>
<td>2.</td>
<td>Beach seine</td>
<td>1/2</td>
<td>658.00</td>
<td>0.81</td>
</tr>
<tr>
<td>3.</td>
<td>Mini purse seine</td>
<td>6/1</td>
<td>3 824.00</td>
<td>0.52</td>
</tr>
<tr>
<td>4.</td>
<td>Monofilament gillnet</td>
<td>3/3</td>
<td>2 500.00</td>
<td>0.51</td>
</tr>
<tr>
<td>5.</td>
<td>Gillnet (JIT)</td>
<td>7/6</td>
<td>3 929.00</td>
<td>0.16</td>
</tr>
<tr>
<td>6.</td>
<td>Bagan Tancap (stationary lift-net)</td>
<td>4/5</td>
<td>2 639.00</td>
<td>0.53</td>
</tr>
<tr>
<td>7.</td>
<td>Cantrang (Danish seine C)</td>
<td>9/9</td>
<td>16 369.00</td>
<td>0.60</td>
</tr>
<tr>
<td>8.</td>
<td>Bottom long-line</td>
<td>2/7</td>
<td>1 983.00</td>
<td>0.29</td>
</tr>
<tr>
<td>9.</td>
<td>Large purse seine</td>
<td>8/8</td>
<td>8 547.00</td>
<td>0.41</td>
</tr>
<tr>
<td>10.</td>
<td>Shrimp-trawl</td>
<td>–</td>
<td>69 450.00</td>
<td>–</td>
</tr>
</tbody>
</table>

Notes:
1. Capital intensity = investment per person - day
2. Catch landed per variable cost = Catch/TVC
3. Gross revenues/operating cost = B/C ratios
4. Rank in terms of capital intensity and B/C ratios

Table 23. Labor and capital productivities from the various types of fishing gear in Indonesia.

<table>
<thead>
<tr>
<th>No.</th>
<th>Type of Gear</th>
<th>Labor Productivity (kg/person-day)</th>
<th>Capital Productivity (kg-Rp-1000⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Payang/Dogol (Danish seine A)</td>
<td>26.38</td>
<td>0.36</td>
</tr>
<tr>
<td>2.</td>
<td>Beach seine</td>
<td>28.56</td>
<td>0.78</td>
</tr>
<tr>
<td>3.</td>
<td>Mini purse seine</td>
<td>14.35</td>
<td>0.45</td>
</tr>
<tr>
<td>4.</td>
<td>Monofilament gillnet</td>
<td>29.00</td>
<td>0.48</td>
</tr>
<tr>
<td>5.</td>
<td>Gillnet (JIT)</td>
<td>12.86</td>
<td>0.15</td>
</tr>
<tr>
<td>6.</td>
<td>Bagan Tancap (stationary lift-net)</td>
<td>38.00</td>
<td>0.49</td>
</tr>
<tr>
<td>7.</td>
<td>Cantrang (Danish seine C)</td>
<td>68.57</td>
<td>0.51</td>
</tr>
<tr>
<td>8.</td>
<td>Bottom long-line</td>
<td>18.72</td>
<td>0.28</td>
</tr>
<tr>
<td>9.</td>
<td>Large purse seine</td>
<td>27.49</td>
<td>0.35</td>
</tr>
<tr>
<td>10.</td>
<td>Shrimp-trawl</td>
<td>32.50</td>
<td>0.08</td>
</tr>
</tbody>
</table>
Problems of Discarding by Species

In contrast to other fishing nations, Indonesia has few problems in terms of fish discards, because large scale fisheries do not generate by-products or discards. Most of the fishing gear/boats utilize all the fish captured either for family consumption or for commercial purposes. In the case of sharks captured by the traditional bottom long line and gillnet, the fishers use the shark's skin as snack-crackers, the fins for soup gourmet, the bones for traditional medicine, and the meat is salted and dried. In large scale fisheries, where the fishing gear targets only specific fish species (e.g. tuna-long line and shrimp-trawl), discards present a problem. Fortunately, tuna long-liners operate in the Indian Ocean and the shrimp-trawlers operate in the Arafura Sea.

Analysis of the Market Structure and Price of Fish

Fish and fishery products are sold mostly at the landing sites with few provisions for the fisher’s family consumption, or sold elsewhere. In the landing places, fish are sorted for three purposes: (1) fresh fish for export, demersal fish and other valuable fish; (2) fresh fish transported to fill the demand in the big cities; (3) fish processed traditionally for local consumption (Fig. 8). Traditional fish processing usually includes less valuable fish such as peperek (pony fishes), ekor kuning (yellow-tail), tiga waja (drums), cucut (sharks), pari (rays), layang (scads), selar (trevallies), lemuru (sardinella), kembang (Indian mackerel) and others. The main objective of fish processing is to fill the local demand.

Table 24 presents the cross-section data of catch composition and price of fish using the different types of gear and Table 25 provides the Indonesian and English names of some fish species captured in the northern part of Java.
Table 24. Total catch, catch composition and price of fish by type of fishing gear in Java, Indonesia in 2000.

<table>
<thead>
<tr>
<th>Fish Species</th>
<th>Payang/Beach seine</th>
<th>Mini purse seine</th>
<th>Monofilament gillnet</th>
<th>Gillnet (JIT)</th>
<th>Bagan Tanca</th>
<th>Bottom Long-line</th>
<th>Large purse seine</th>
<th>Price of fish (Rp·kg⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ikan Sebelah</td>
<td>720</td>
<td></td>
<td></td>
<td>2400</td>
<td></td>
<td></td>
<td></td>
<td>5000</td>
</tr>
<tr>
<td>Ikan Lidah</td>
<td></td>
<td></td>
<td></td>
<td>2400</td>
<td></td>
<td></td>
<td></td>
<td>5000</td>
</tr>
<tr>
<td>Peperek</td>
<td></td>
<td>7 440</td>
<td>12 480</td>
<td>67 800</td>
<td></td>
<td></td>
<td></td>
<td>1125</td>
</tr>
<tr>
<td>Manyung</td>
<td>480</td>
<td>2 880</td>
<td>500</td>
<td>2 229</td>
<td></td>
<td></td>
<td></td>
<td>5 850</td>
</tr>
<tr>
<td>Bambangan</td>
<td></td>
<td></td>
<td></td>
<td>1 532</td>
<td>3 086</td>
<td></td>
<td></td>
<td>8 000</td>
</tr>
<tr>
<td>Kerapu</td>
<td></td>
<td></td>
<td></td>
<td>510</td>
<td></td>
<td>2 160</td>
<td></td>
<td>8 850</td>
</tr>
<tr>
<td>Kakap</td>
<td></td>
<td>7 950</td>
<td></td>
<td>206</td>
<td></td>
<td></td>
<td></td>
<td>10 650</td>
</tr>
<tr>
<td>Ekor Kuning</td>
<td>147 360</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 875</td>
</tr>
<tr>
<td>Tiga waja</td>
<td>15 840</td>
<td>12 000</td>
<td></td>
<td>2 880</td>
<td>5 040</td>
<td>12 000</td>
<td>2 075</td>
<td></td>
</tr>
<tr>
<td>Cucut</td>
<td>1 680</td>
<td></td>
<td>2 701</td>
<td>6 000</td>
<td>6 034</td>
<td>2 400</td>
<td>4 050</td>
<td></td>
</tr>
<tr>
<td>Pari</td>
<td>4 080</td>
<td>9 600</td>
<td>6 000</td>
<td>701</td>
<td>4 680</td>
<td>7 577</td>
<td>2 250</td>
<td></td>
</tr>
<tr>
<td>Bawal Hitam</td>
<td>960</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6 875</td>
</tr>
<tr>
<td>Bawal Putih</td>
<td></td>
<td>1 600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>400</td>
<td>8 000</td>
</tr>
<tr>
<td>Alu-alu</td>
<td></td>
<td>2 880</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>800</td>
<td>2 000</td>
</tr>
<tr>
<td>Layang</td>
<td>40 000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>180 864</td>
<td>3 150</td>
</tr>
<tr>
<td>Selar</td>
<td>16 220</td>
<td></td>
<td>1 200</td>
<td></td>
<td></td>
<td>17 600</td>
<td>3 900</td>
<td></td>
</tr>
<tr>
<td>Talang-talang</td>
<td></td>
<td></td>
<td></td>
<td>3 120</td>
<td></td>
<td></td>
<td></td>
<td>1 800</td>
</tr>
<tr>
<td>Julung-julung</td>
<td>4 800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 100</td>
<td></td>
</tr>
<tr>
<td>Teri</td>
<td></td>
<td></td>
<td></td>
<td>2 400</td>
<td></td>
<td></td>
<td></td>
<td>12 000</td>
</tr>
<tr>
<td>Japuh</td>
<td>960</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>800</td>
<td>2 500</td>
<td></td>
</tr>
<tr>
<td>Tembang</td>
<td>5 520</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 500</td>
<td></td>
</tr>
<tr>
<td>Lemuru</td>
<td>20 780</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4 800</td>
<td>2 000</td>
<td></td>
</tr>
<tr>
<td>Kembung</td>
<td>720</td>
<td>40 000</td>
<td></td>
<td></td>
<td></td>
<td>49 440</td>
<td>5 150</td>
<td></td>
</tr>
<tr>
<td>Tenggirí</td>
<td></td>
<td></td>
<td></td>
<td>11 685</td>
<td>600</td>
<td>160</td>
<td>10 300</td>
<td></td>
</tr>
<tr>
<td>Layur</td>
<td>6 960</td>
<td></td>
<td>240</td>
<td>6 000</td>
<td>1 166</td>
<td>3 250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tongkol</td>
<td>480</td>
<td></td>
<td></td>
<td></td>
<td>10 920</td>
<td></td>
<td>6 000</td>
<td></td>
</tr>
<tr>
<td>Rajungan</td>
<td></td>
<td>480</td>
<td></td>
<td></td>
<td></td>
<td>7 500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dogol (udang)</td>
<td>2 640</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22 000</td>
<td></td>
</tr>
<tr>
<td>Simping</td>
<td>2 880</td>
<td>1 200</td>
<td>2 160</td>
<td></td>
<td></td>
<td></td>
<td>5 500</td>
<td></td>
</tr>
<tr>
<td>Cumi-cumi</td>
<td>2 880</td>
<td>1 200</td>
<td>1 920</td>
<td></td>
<td>720</td>
<td>2 400</td>
<td>8 00</td>
<td>7 300</td>
</tr>
<tr>
<td>Sotong</td>
<td></td>
<td>720</td>
<td></td>
<td></td>
<td></td>
<td>800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>50 640</td>
<td>171 360</td>
<td>117 000</td>
<td>27 760</td>
<td>25 534</td>
<td>27 360</td>
<td>115 200</td>
<td>22 458</td>
</tr>
</tbody>
</table>

1 US$ = 9725 Rupiah in 2000. Source: oanda.com
Table 25. Indonesian and English names of some fish species in Northern Java.

<table>
<thead>
<tr>
<th>No.</th>
<th>Indonesian Name</th>
<th>English Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Ikan Sebelah</td>
<td>Indian halibuts</td>
</tr>
<tr>
<td>2.</td>
<td>Ikan Lidah</td>
<td>Fourlined tongue sole</td>
</tr>
<tr>
<td>3.</td>
<td>Petek/Peperek</td>
<td>Pony fishes, ship mounts</td>
</tr>
<tr>
<td>4.</td>
<td>Manyung</td>
<td>Sea catfishes</td>
</tr>
<tr>
<td>5.</td>
<td>Bambangan</td>
<td>Red snapper</td>
</tr>
<tr>
<td>6.</td>
<td>Kerapu</td>
<td>Grouper</td>
</tr>
<tr>
<td>7.</td>
<td>Kakap</td>
<td>Giant perch</td>
</tr>
<tr>
<td>8.</td>
<td>Ekor Kuning</td>
<td>Yellow tail</td>
</tr>
<tr>
<td>9.</td>
<td>Tiga waja</td>
<td>Drums</td>
</tr>
<tr>
<td>10.</td>
<td>Cucut</td>
<td>Shark</td>
</tr>
<tr>
<td>11.</td>
<td>Pari</td>
<td>Rays</td>
</tr>
<tr>
<td>12.</td>
<td>Bawal Hitam</td>
<td>Pomfret black</td>
</tr>
<tr>
<td>13.</td>
<td>Bawal Putih</td>
<td>Pomfret silver</td>
</tr>
<tr>
<td>14.</td>
<td>Aku-alu</td>
<td>Barracuda</td>
</tr>
<tr>
<td>15.</td>
<td>Layang</td>
<td>Scads</td>
</tr>
<tr>
<td>16.</td>
<td>Selar</td>
<td>Trevallies</td>
</tr>
<tr>
<td>17.</td>
<td>Talang-talang</td>
<td>Deep leatherskin</td>
</tr>
<tr>
<td>18.</td>
<td>Julung-julung</td>
<td>Berred garfish</td>
</tr>
<tr>
<td>19.</td>
<td>Teri</td>
<td>Anchovies</td>
</tr>
<tr>
<td>20.</td>
<td>Japuh</td>
<td>Rainbow sardines</td>
</tr>
<tr>
<td>21.</td>
<td>Tembang</td>
<td>Fringescale sardinella</td>
</tr>
<tr>
<td>22.</td>
<td>Lemuru</td>
<td>Sardinella</td>
</tr>
<tr>
<td>23.</td>
<td>Kembung</td>
<td>Indian mackerel</td>
</tr>
<tr>
<td>24.</td>
<td>Tenggiri</td>
<td>Mackerel</td>
</tr>
<tr>
<td>25.</td>
<td>Layur</td>
<td>Hair tails</td>
</tr>
<tr>
<td>26.</td>
<td>Tongkol</td>
<td>Eastern little tuna</td>
</tr>
<tr>
<td>27.</td>
<td>Rajungan</td>
<td>Swimming crabs</td>
</tr>
<tr>
<td>28.</td>
<td>Dogol (udang)</td>
<td>Crustacea (Metapenaeus)</td>
</tr>
<tr>
<td>29.</td>
<td>Simping</td>
<td>Common window shell</td>
</tr>
<tr>
<td>30.</td>
<td>Cumi-cumi</td>
<td>Squids</td>
</tr>
<tr>
<td>31.</td>
<td>Sotong</td>
<td>Cuttlefish</td>
</tr>
</tbody>
</table>

Bioeconomic Analysis of Demersal Fishing in the Northern Part of Java
Rationale - Bioeconomics Concepts: Optimal Utilization of the Fishery Assets

The best use of fishery resources as economic assets was determined. Based on Surplus Yield models (Schaefer, 1954), there is a certain natural increase $F(x)$ for each level of biomass, and the expression $X(t)$ represents the biomass at time t (see Equation 1). $F(x)$ may also be interpreted as the natural surplus production and is positive for $0 < x < k$, where k is the natural carrying capacity of the aquatic environment.

$$\frac{dx}{dt} = F(x)$$ \hspace{1cm} (1)

In accordance with capital theory, $F(x)$ may be interpreted as the rate of investment in the stock of natural capital. Biological equilibrium is the condition where $F(x) = h(t)$ and $h(t)$ is the rate of withdrawal due to fishing. Hence, the basic resource management problem is to determine the rate of withdrawal, $h(t)$, that will optimize the benefits from the fishery resources. To do this, assume a specific form of the harvest function by employing the model below. Equation (2) is the sustainable yield equation which implies the equality of Y_i and $F(x)$.

$$Y_i = aE_i - bE_i^2$$ \hspace{1cm} (2)

where

E_i is the fishing effort per unit time

Y_i is the corresponding catch or yield from the resource or the rate of harvest

The Schaefer model implies that yield increases with fishing effort until it reaches a maximum, and then declines as effort is further increased. The Schaefer model may be transformed into the following form:

$$(Y_i/E_i) = CPUE = a - bE_i$$ \hspace{1cm} (3)

Equation (3) means that the CPUE (catch per unit effort) is a linear function of effort where maximum yield is,

$$E_i (msy) = \left\{ \frac{a}{2b} \right\}$$ \hspace{1cm} (4)

$$Y_i (msy) = a \left\{ \frac{a}{2b} \right\} - b \left\{ \frac{a}{2b} \right\}^2$$
Review of the Fisheries Legal Environment

In order to attain the objectives of fisheries management, the government of Indonesia has issued several laws and regulations, namely:

1. Act No. 9, 1985 - enacted to deal with all aspects of fisheries;
2. Ministerial Decrees No. 277, 1986 on fishing permits in Indonesian waters and EEZ;
3. Presidential Decrees No. 39, 1980 on banning the use of trawls from Indonesian waters;
4. Presidential Instruction No. 11, 1982 on extending the trawl ban throughout all Indonesian waters except the Arafura Sea;
5. Ministerial Decree No. 995/Kpts/Ik-210/0/1999 on potential of the resources and total allowable catch (TAC) in Indonesian waters;
6. Ministerial Decree on Monitoring, Controlling, Surveillance and Enforcement;
7. Ministerial Decree on fishing zones for Indonesian waters.

The results of this study, together with the application of the laws and regulations including the MCS and enforcement, will support fisheries management of demersal resources, so that their health and sustainability is maintained.

Framework and Estimation

Model Specification

Application of the surplus yield production model will correspond to three specification models that can be used to determine the sustainable use of fishery resources.

1. (Schaefer, 1954) Model
 \[Y_t = a_1 E_t - a_2 E_t^2 \]

2. (O’Rourke, 1971) and (Anderson, 1977)
 \[\frac{Y_t}{E_t} = CPUE = b_1 - b_2 E_t + b_3 T \]

3. (Fox, 1970) and (Pauly, 1984)
 \[\ln CPUE = c_1 - c_2 E_t \]

where \(a, b \) and \(c \) are parameters to be estimated.
Data: Catch-effort of Traditional Gear (Using Standard Effort Of Danish Seine A):

The time series data of catch-effort using Danish seine A (payang/dogol) is presented in Table 26, together with information of the demersal species from 1977 - 1995 using traditional gear like Danish seine B (arad), bottom long-line, set gillnet (jaring insang tetap) and beach seine (pukat pantai) from the regional statistics offices in West Java, Central Java and East Java. This showed that from the average CPUE per gear, the fishing power index (FPI) was as follows: (a) Danish seine A = 1, (b) Danish seine B = 0.822071, (c) set gillnet = 0.242506, (d) bottom long-line = 0.330667 and (e) beach seine = 16.077598.

Model Estimation

Following (Schaefer, 1954), the surplus yield production with a quadratic function was estimated to be:

\[
Q_t = 0.092729 E_t^2 - 0.000000033321 E_t^2 + 5188.068 T
\]

\[
t = 3.74 \quad \text{t-ratio: (-2.35)}
\]

\[
R^2 = 0.77; \quad F\text{-test} = 26.82
\]

where,

\(Q_t\) = total catch of Danish seine A in time \(T_t\) (t-year\(^{-1}\))

\(E_t\) = total effort of Danish seine A in time \(T\) (units-year\(^{-1}\))

\(T\) = time trend to capture the other variables that were not available in the database

Comparison among the three models namely, (1) the linear CPUE model by (O’Rourke 1971) and (Anderson 1977), (2) the exponential function by (Fox 1970) and (Pauly 1984) and (3) the quadratic function by (Schaefer 1954), indicates that the Schaefer model has the best linear unbiased estimator (BLUE) characteristics. The Schaefer model is statistically significant at 95% confidence levels for t-test and F-test (partial and joint significant test). The algebraic sign of each variable is theoretically sound. The model also shows no serial auto-correlation by the Durbin Watson test (a test statistic designed to detect errors). Therefore, this model is statistically acceptable for further economic analysis.

Table 26. Catch and effort data of traditional gear in the northern part of Java in 1977 - 95.

<table>
<thead>
<tr>
<th>Year</th>
<th>Total standard effort using dogol (fishing trip days)</th>
<th>Total yield (t)</th>
<th>CPUE (kg·trip(^{-1})·day(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1977</td>
<td>1 503 209</td>
<td>78 613</td>
<td>52.30</td>
</tr>
<tr>
<td>1978</td>
<td>1 247 665</td>
<td>87 665</td>
<td>70.26</td>
</tr>
<tr>
<td>1979</td>
<td>1 853 206</td>
<td>100 033</td>
<td>53.98</td>
</tr>
<tr>
<td>1980</td>
<td>1 534 702</td>
<td>104 790</td>
<td>68.28</td>
</tr>
<tr>
<td>1981</td>
<td>1 545 191</td>
<td>77 602</td>
<td>50.22</td>
</tr>
<tr>
<td>1982</td>
<td>1 144 009</td>
<td>92 306</td>
<td>80.69</td>
</tr>
<tr>
<td>1983</td>
<td>1 511 106</td>
<td>86 080</td>
<td>56.97</td>
</tr>
<tr>
<td>1984</td>
<td>1 563 211</td>
<td>86 821</td>
<td>55.54</td>
</tr>
<tr>
<td>1985</td>
<td>1 615 316</td>
<td>92 10</td>
<td>57.21</td>
</tr>
<tr>
<td>1986</td>
<td>1 881 144</td>
<td>98 189</td>
<td>52.20</td>
</tr>
<tr>
<td>1987</td>
<td>1 679 298</td>
<td>112 023</td>
<td>66.71</td>
</tr>
<tr>
<td>1988</td>
<td>1 477 452</td>
<td>111 045</td>
<td>75.16</td>
</tr>
<tr>
<td>1989</td>
<td>1 110 388</td>
<td>112 034</td>
<td>101.81</td>
</tr>
<tr>
<td>1990</td>
<td>1 275 347</td>
<td>125 777</td>
<td>98.62</td>
</tr>
<tr>
<td>1991</td>
<td>1 184 138</td>
<td>134 047</td>
<td>113.20</td>
</tr>
<tr>
<td>1992</td>
<td>1 180 475</td>
<td>143 125</td>
<td>121.24</td>
</tr>
<tr>
<td>1993</td>
<td>1 069 277</td>
<td>168 233</td>
<td>157.34</td>
</tr>
<tr>
<td>1994</td>
<td>1 473 618</td>
<td>179 538</td>
<td>121.84</td>
</tr>
<tr>
<td>1995</td>
<td>1 342 004</td>
<td>186 195</td>
<td>138.75</td>
</tr>
</tbody>
</table>

Source: Directorate General of Fisheries (DGF), 1998.

Note: dogol = Danish seine A

From the model (a) the total effort and total yield can be calculated at maximum sustainable yield (MSY) as follows,

\[
E_t^{(\text{msy})} = 1 391 434 \text{ trip-days of Danish seine A/annum}
\]

\[
Q_t^{(\text{msy})} = 116 187 \text{ t-year}^{-1}
\]
The total allowable catch (TAC) and the important point where the code of conduct for responsible fisheries (CCRF) can be allocated according to the precautionary approach is estimated at,

\[E_{\text{TAC}} = 1 \, 252,291 \text{ trip-days of Danish seine A/annum} \]

\[Q_{\text{TAC}} = 115,542 \text{ t-year}^{-1} \]

On average 5,218 units of Danish seine A can operate for 240 days annually in the northern part of Java.

The open-access equilibrium (OAE) point is where the total revenue equals total cost of Danish seine A operation, or where there is an absence of economic profit. The calculated result was as follows,

\[E_{\text{OAE}} = 1,435,746 \text{ trip-days of Danish seine A/annum} \]

\[Q_{\text{OAE}} = 116,122 \text{ t-year}^{-1} \]

At open-access equilibrium, there would be 5,982 units of Danish seine A gear operating in the area.

The optimum economic yield (OEU) point can be found whenever the marginal revenues equal the marginal cost of effort for the Danish seine A operation. Suppose the price of fish that was captured by Danish seine A is on the average equal to Rp 7,300,000·t^{-1}. The average cost of effort is the total cost per boat (or the opportunity cost of the vessel) divided by the total trip-days per boat. Annually, this equals Rp 590,416.67·trip-day^{-1}.

\[TC = 590,416.67 \times E_t \]

\[TR = 7,300,000 \times Q_t \]

The result will be,

\[E_{\text{OEY}} = 67,108.3 \text{ t annually} \]

\[Q_{\text{OEY}} = 177,812 \text{ trip-days of Danish seine A} \]

Where

TC = total cost

TR = total revenue

Analysis of Management Objectives and Schemes

a. The relationships between total allowable catch (TAC) with maximum sustainable yield (MSY) and optimum economic yield (OEU) with open-access equilibrium (OAE) are given below.

- Table 27 explains the relationship between these points (OEY, TAC, MSY and OAE), the changes of total yield, total effort, total number of vessels (standard dogol), which is calculated from total effort divided by total trip-days/boat annually, CPUE, the changes of profit/boat annually and the changes of profit after income taxation and ad valorem taxation in each condition.

- Fig. 9 explains the relationships between total yield, total effort, marginal cost (derived from the derivative of cost to quantity) and average cost (derived from total cost divided by quantity).

Results of the calculations can be seen in Table 28. Prior to 1988, the total amount of effort is relatively high, so that on many occasions the mean total effort is larger than total effort at MSY or OAE level. In the last five to eight years, the total amount of effort has been smaller than E_t, MSY.

b. Suppose income taxation of 2.5 % is introduced, then theoretically the result will be,

\[\pi = (TR - TC) \times (1 - 0.025) \]

The producer should not pay tax if the firm experiences loss of profits. If the price of output is a fixed number, then the output will not change when a tax is introduced.

c. Suppose an ad valorem tax of 2.5 % is introduced, then theoretically the outcome will be,

\[\pi = TR \times (1 - 0.025) - TC \]

The producer should pay the tax even though the firm has experienced loss of profits. If the price of output was estimated through the demand function where the ‘price’ and ‘output’ fluctuated continuously, then whenever a tax is introduced by the government, the price of output will increase and the quantity of output will decline. The ad valorem tax has a bigger impact since increasing price will reduce the total quantity of supply and profits of the industry. Therefore, in the long run, the producer will reduce the total amount of effort. The result can be seen in Table 27.

d. Suppose there are several changes in the “existing total effort”. Alternative 1 will be when the existing total effort (E_t, existing) is the mean of total effort during 1977 - 95. Alternative 2 is
when \(E_{t, \text{existing}} \) is the mean of total effort for the last ten years (1985 - 95). Alternative 3 is when the \(E_{t, \text{existing}} \) is the mean of total effort for the last five years (1990 - 95). Alternative 4 is whenever the \(E_{t, \text{existing}} \) is the mean of total effort for the last five years - given income taxation at 20%.

Results from Table 27 show that:

i. profit after income taxation declined up to the point where \(E_{t, \text{OAE}} \) is approaching and at \(E_{t, \text{OAE}} \) profit has disappeared;
ii. at \(E_{t, \text{existing}} > E_{t, \text{OAE}} \) (Alternative 1), the industry suffers from loss of profits;
iii. profit after ad valorem taxation will place more burden on the industry. The calculation shows that “profit after income taxation” has a bigger impact compared to “profit after ad valorem taxation”. For example, at \(E_{t, \text{OAE}} \), profit after income taxation was zero but ad valorem taxation reduces the zero profit to Rp 3,540,785. Comparing Alternatives 3 and 4, if the income taxation level increases to 20% then the result of “profit after income taxation” will be equal to “profit after ad valorem taxation”.

The fishing industry would be better off if the government introduced income taxation rather than ad valorem taxation.
Table 27. The relationship between MSY, OEY, and OAE points.

<table>
<thead>
<tr>
<th>No.</th>
<th>Items</th>
<th>Qt (t·year⁻¹)</th>
<th>Et (trip-days)</th>
<th>Total number of boats (units)</th>
<th>CPUE (kg-trip-day⁻¹)</th>
<th>Profits* (boats⁻¹·year⁻¹) (Rp)</th>
<th>Income taxation (Rp)</th>
<th>Ad valorem taxation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Optimum Economic Yield (OEY) points</td>
<td>67 108.30</td>
<td>177 812</td>
<td>3 568</td>
<td>377.41</td>
<td>519 522 054</td>
<td>506 534 003</td>
<td>502 991 761</td>
</tr>
<tr>
<td>2.</td>
<td>Total Allowable Catch (TAC)</td>
<td>115 543</td>
<td>1 252 305</td>
<td>5 218</td>
<td>92.27</td>
<td>19 946 991</td>
<td>19 448 316</td>
<td>15 915 613</td>
</tr>
<tr>
<td>3.</td>
<td>Maximum Sustainable Yield (MSY)</td>
<td>116 188</td>
<td>1 391 450</td>
<td>5 798</td>
<td>83.50</td>
<td>4 594 423</td>
<td>4 479 563</td>
<td>934 699</td>
</tr>
<tr>
<td>4.</td>
<td>Open Access Equilibrium (OAE)</td>
<td>116 122</td>
<td>1 435 746</td>
<td>5 982</td>
<td>80.88</td>
<td>–</td>
<td>–</td>
<td>(-3 540 785)</td>
</tr>
<tr>
<td>5.</td>
<td>Existing Total Effort</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Alternative 1)</td>
<td>114 554</td>
<td>1 435 882</td>
<td>6 058</td>
<td>78.79</td>
<td>(-3 656 743)</td>
<td>6 971 171</td>
<td>3 428 671</td>
</tr>
<tr>
<td></td>
<td>(Alternative 2)</td>
<td>116 168</td>
<td>1 367 315</td>
<td>5 697</td>
<td>84.96</td>
<td>7 149 919</td>
<td>19 714 434</td>
<td>16 171 843</td>
</tr>
<tr>
<td></td>
<td>(Alternative 3)</td>
<td>115 520</td>
<td>1 249 903</td>
<td>5 208</td>
<td>92.42</td>
<td>20 219 839</td>
<td>16 171 843**</td>
<td>16 171 843</td>
</tr>
<tr>
<td></td>
<td>(Alternative 4)</td>
<td>115 520</td>
<td>1 249 903</td>
<td>5 208</td>
<td>92.42</td>
<td>20 219 839</td>
<td>16 171 843</td>
<td>16 171 843</td>
</tr>
</tbody>
</table>

* Assuming price of output (P) and AC of effort, or q is a fixed number; calculation, results, using the Schaefer model, data price of output (P), average cost of effort (q).

** When approaching alternative 3 with 20% income taxation.

Fig. 10. Relationship of CPUE and Effort to Time period.
Table 28. The relationships between effort, yield, MC, AC and P.

<table>
<thead>
<tr>
<th>No.</th>
<th>Total effort (1 000 trip-days)</th>
<th>Yield (t)</th>
<th>MC<sub>t</sub></th>
<th>AC</th>
<th>P</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>177.81</td>
<td>67 108.3</td>
<td>7 299 963</td>
<td>1 564 370</td>
<td>7 300 000</td>
<td>OEy</td>
</tr>
<tr>
<td>2.</td>
<td>1 069.30</td>
<td>112 729</td>
<td>27 499 375</td>
<td>5 600 445</td>
<td>7 300 000</td>
<td>E<sub>t</sub>,'93</td>
</tr>
<tr>
<td>3.</td>
<td>1 110.39</td>
<td>113 555</td>
<td>31 519 667</td>
<td>5 773 350</td>
<td>7 300 000</td>
<td>E<sub>t</sub>,'89</td>
</tr>
<tr>
<td>4.</td>
<td>1 144.00</td>
<td>114 147</td>
<td>35 801 104</td>
<td>5 917 253</td>
<td>7 300 000</td>
<td>E<sub>t</sub>,'82</td>
</tr>
<tr>
<td>5.</td>
<td>1 180.48</td>
<td>114 705</td>
<td>42 001 570</td>
<td>6 076 240</td>
<td>7 300 000</td>
<td>E<sub>t</sub>,'92</td>
</tr>
<tr>
<td>6.</td>
<td>1 249.90</td>
<td>115 520</td>
<td>62 593 469</td>
<td>6 388 174</td>
<td>7 300 000</td>
<td>Average E<sub>t</sub></td>
</tr>
<tr>
<td>7.</td>
<td>1 252.31</td>
<td>115 543</td>
<td>63 700 474</td>
<td>6 399 217</td>
<td>7 300 000</td>
<td>TAC</td>
</tr>
<tr>
<td>8.</td>
<td>1 391.45</td>
<td>116 188</td>
<td>Infinity</td>
<td>7 070 741</td>
<td>7 300 000</td>
<td>MSY</td>
</tr>
<tr>
<td>9.</td>
<td>1 435.75</td>
<td>116 122</td>
<td>Negative</td>
<td>7 299 98</td>
<td>7 300 000</td>
<td>OAE</td>
</tr>
<tr>
<td>10.</td>
<td>1 503.21</td>
<td>115 771</td>
<td>Negative</td>
<td>7 666 171</td>
<td>7 300 000</td>
<td>E<sub>t</sub>,'77</td>
</tr>
<tr>
<td>11.</td>
<td>1 545.19</td>
<td>115 771</td>
<td>Negative</td>
<td>7 880 263</td>
<td>7 300 000</td>
<td>E<sub>t</sub>,'81</td>
</tr>
<tr>
<td>12.</td>
<td>1 615.32</td>
<td>114 517</td>
<td>Negative</td>
<td>8 328 125</td>
<td>7 300 000</td>
<td>E<sub>t</sub>,'85</td>
</tr>
<tr>
<td>13.</td>
<td>1 679.30</td>
<td>113 426</td>
<td>Negative</td>
<td>8 741 255</td>
<td>7 300 000</td>
<td>E<sub>t</sub>,'87</td>
</tr>
<tr>
<td>14.</td>
<td>1 853.21</td>
<td>109 082</td>
<td>Negative</td>
<td>10 030 675</td>
<td>7 300 000</td>
<td>E<sub>t</sub>,'79</td>
</tr>
<tr>
<td>15.</td>
<td>1 881.15</td>
<td>108 197</td>
<td>Negative</td>
<td>10 265 186</td>
<td>7 300 000</td>
<td>E<sub>t</sub>,'86</td>
</tr>
</tbody>
</table>

Following (Anderson 1977), MC_t can be calculated as,

\[
MC_t = \frac{q}{\sqrt{(b)^2 - 4 * (a) * (c)}}
\]

\[
= \frac{590 416.67}{\sqrt{(0.092 729)^2 - 4 (0.000 000 033 321 * (Q_t - 51 673.67))}}
\]

\[
= \frac{590 416.67}{\sqrt{(0.008 598 667 441) - 0.000 000 133 284 * (Q_t - 51 673.67)}}
\]

\[
AC_t = \frac{TC}{Q_t} = \frac{590 416.67 \times E_t}{0.092 729 E_t - 0.000 000 033 321 E_t^2 + 518 80.67}
\]
Comparison with Other Demersal Resource Potential Studies

a. At a similar location in the northern part of Java and southern Kalimantan, studies conducted by Martosubroto et al. (1997) and Badrudin et al. (1997) showed similar results. In the northern part of Java $Q_{t,MSY} = 116 187 \text{ t \cdot year}^{-1}$ with an average landing of 115 520 t while the $E_{t,\text{t,msy}} = 1 391 450 \text{ trip-days}$ and the average total effort equals 1 249 903 trip-days (Alternative 3). These figures indicate that the demersal fisheries in the northern part of Java are still below the MSY level where $E_{t,\text{OAE}} > E_{t,\text{MSY}} > E_{t,\text{existing}}$. These conditions imply that demersal fisheries in the northern part of Java was still profitable since $E_{t,\text{existing}} < E_{t,\text{OAE}}$. Given the 2.5% income taxation level, annual profit/boat equals Rp 19 714 343, and at the 2.5% ad valorem taxation level, annual profit/boat declines to Rp 16 171 843.

b. Other studies done by Martosubroto et al. (1997) and Badrudin et al. (1997) illustrate that in the northern part of Java, the average utilization rate is 92% for the demersal resources.

c. For the northern part of Java and southern Kalimantan, studies on the demersal potential resource conducted by Badrudin et al. (1997) and Martosubroto et al. (1997) showed similar results. The quantity of maximum sustainable yield ($Q_{t,MSY}$) ranges from 153 100 - 161 900 t\cdot year$^{-1}$, with average landings equal to 132 965 t, and the utilization rates are lower - between 82% and 87%, (see Table 25).

d. In the northern part of Java if $E_{t,\text{existing}} < E_{t,TAC}$, then the total amount of effort could be increased by 590 trip-days which is equal to two additional units of fishing vessel (Danish seine A standard).

Conclusions and Recommendations

In 1997, Indonesia fisheries export values were around 17 times higher than import values. Fisheries export commodities are composed mostly of shrimp, tuna and skipjack and demersal fish. The balance of trade (BOT) showed a surplus rising from US$5 994 000 (1970) to US$1 658 827 000, or an annual increase of 10.25%. The future of fisheries is promising. In 1998, the DGf introduced PROTEKAN 2003, an export program.

In the small scale fishery, the dominant fishing gear is hook-and-line (40%), gillnet (30.6%), traps (10%), seine net (5.84%), lift-net (5.80%), purse seine (1.34%), shrimp net with BED (0.04%) and other gear (7.3%). The vessels used are (i) non-powered boat (49.4%), (ii) with outboard engines (22.3%), and (iii) with inboard engines (16.8%). The inboard engines could be further divided into sizes: (a) between 5 - 10 GT (14%), (b) 11 - 30 GT (1.3%), (c) 31 - 100 GT (1.2%), and (d) >100 GT (0.3%). Since small scale fishery activities are limited to the coastal areas, over-fishing occurs in the Java Sea.

In terms of production and technology efficiency, the combined inputs of manpower (MF), total fuel/day and total number of vessels (JUK) are not optimal either for small- or large scale vessels. For large scale fishing vessels (< 30 GT), the amount of fuel/day should be increased while the total number of boats should be reduced. In large scale fishing fleets (> 30 GT), fuel/day should be increased while the total number of fishing fleets (purse seine in the South China sea/Masalembo-Matasiri and shrimp-trawl in the Arafura sea) should be increased. If the volume of fuel/day either for small- or large scale fishing vessels is increased, then these fleets must fish offshore and in larger fishing areas.

On average, labor costs were the dominant expenditures except in shrimp-trawling, where total fixed costs are the dominant expenditure. Note however, that this kind of vessel is the most capital-intensive fishing vessel while cantrang (Danish seine C) may be regarded as the most labor-intensive vessel.

Budget analysis showed that almost all vessels except cantrang (Danish seine C) were profitable during the relevant period and at prevailing interest rates ($r = 27\%$). Assuming that fisheries activities have a medium risk factor of 10% and the existing interest rate is 27%, then beach seine, stationary lift-net, monofilament gillnet, Danish seine A and set gillnet are profitable and feasible for investment.

In large scale fisheries, the operations do not entail discarding the by-catch product. In the northern part of Java, most of the fish captured are utilized either for family consumption or for commercial purposes.

For traditional long-line and gillnet, where accidental capturing of sharks occurs, fishers utilize the skin for snack crackers, the fin for “soup-gourmet”, the bones for Chinese traditional medicine and the meat is salted and dried and consumed locally.
Problems of by-catch products might occur in the commercial tuna long-liner and shrimp-trawler fisheries but these fisheries operate away from the northern part of Java (i.e. in the Arafura Sea and Indian Ocean).

The Schaefer surplus yield production model, applied to dogol (Danish seine A) indicates that the existing total effort in inshore waters is smaller than the total effort at MSY (or $E_{t,\text{MSY}} > E_{t,\text{existing}}$ and $Q_{t,\text{MSY}} > Q_{t,\text{existing}}$). Therefore, on average, profits of the industry show a positive annual response.

At the maximum sustainable yield, the total existing number of fishing vessels could expand from 5 208 units to 5 797 units, so that the CPUE would be reduced from 92.42 kg·day$^{-1}$ to 84 kg·day$^{-1}$. At the same yield level, if 2.5% income taxation is introduced by the government to the industry then on the average, the profit·boat$^{-1}$·year$^{-1}$ might decline from Rp 4 594 425 to Rp 4 479 565. At OAE, income taxation cannot be introduced, since the industry shows no profit at that level.

Other studies (Table 29) showed that during the period of 1991 - 2000, the average utilization rate of the demersal fishes was 92% while this study obtained a utilization rate almost approaching the MSY level.

For future studies, simultaneous equations which integrate the Schaefer, demand function, production technology, taxation policy and the feasibility study constraints, should be used in one general model in order to incorporate the endogenous variables whenever the government policy and the exogenous variables change. This is called modeling in system thinking and system analysis, and might be done to model all parameters affecting demersal fisheries.

Table 29. Demersal resource studies in the Java Sea, Indonesia.

<table>
<thead>
<tr>
<th>No.</th>
<th>Location</th>
<th>Model</th>
<th>$Q_{t,\text{MSY}}$ (t)</th>
<th>$E_{t,\text{MSY}}$ (effort)</th>
<th>Average landings (t)</th>
<th>Utilization rates (%)</th>
<th>Average existing total effort (trip-days)</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>Northern part of Java and Southern Kalimantan</td>
<td>Schaefer</td>
<td>161 900</td>
<td>–</td>
<td>132 965</td>
<td>82</td>
<td>–</td>
<td>Martosubroto et al. (1997)</td>
</tr>
<tr>
<td>2.</td>
<td>Northern part of Java</td>
<td>Schaefer</td>
<td>116 100</td>
<td>–</td>
<td>87 240</td>
<td>75</td>
<td>–</td>
<td>Badrudin et al. (1997)</td>
</tr>
<tr>
<td>2.</td>
<td>Northern part of Java, Southern Kalimantan, Eastern Sumatra</td>
<td>Schaefer</td>
<td>367 100</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Badrudin et al. (1997)</td>
</tr>
</tbody>
</table>

References

