Fish supply and demand for food security in Sub-Saharan Africa: An analysis of the Zambian fish sector

Nhuong Trana,⁎, Long Chua, Chin Yee Chana, Sven Geschickc, Michael John Phillipsd, Alexander Shula Kefi

aWorldFish, Jalan Batu Maung, Batu Maung, 11960 Penang, Malaysia
bCrawford School of Public Policy, The Australian National University, Canberra, ACT 2601, Australia
cWorldFish Zambia Office, P.O. Box 51289, Ridgeway, Lusaka 10101, Zambia
dDepartment of Fisheries, P.O. Box 350100, Chilanga 10101, Zambia

\textbf{ARTICLE INFO}

\textbf{Keywords:}
- Zambia
- Aquaculture
- Fisheries
- Supply demand
- Food security
- Sub-Saharan Africa

\textbf{ABSTRACT}

The demand for fish in Sub-Saharan Africa, as driven by the trend of diet-shift to fish, economic and demographic growth, outstrips supply. The resulting fish deficit is drawing attention of policy makers as it poses threats to economic stability as well as food security in the region. In this paper, a multi-species, multi-sector equilibrium model is developed and applied to Zambia as a case study to provide a tool for policy makers to examine the interaction between fish supply and demand. Projection results show that under business-as-usual scenario, the fish deficit in Zambia will increase and fish import will be a key contributor of fish for consumption in 2030. Increasing import tax will not solve the fish deficit due to a limited substitution between domestic and imported fish, while this tariff restriction may increase the fish price and affect poor people. The model results suggest that further investment in aquaculture could provide a solution if input markets for seed and feed are appropriately developed. Though calibrated to Zambia's fish sector, the model can be applied to analyze the outlook of fish sectors in other developing countries.

1. Introduction

Fish is a critical source of animal protein, mineral, and micro-nutrient supplies in Africa where more than 200 million people are reported to eat fish regularly [1]. There are about 20 African countries where fish accounts for more than 20% of animal protein supplies [2]. Similar to other continents, Africa has recently experienced a diet transformation toward increasing demand for animal source products such as meat and fish [3,4]. Growth in fish consumption was high (at 25–50%) between 2007 and 2015 in most countries in Sub-Saharan Africa (SSA) [5]. As observed in other regions, the trend of increasing demand for fish in Africa is driven by population and income growth, and increasing appreciation of health benefits of fish consumption [6]. Changes in lifestyles and consumer preferences associated with rapid urbanization and globalization are also reported to be positively correlated with increasing fish consumption.

Despite the increasing demand for fish, fish production growth in capture fisheries and aquaculture in Africa has been slow [7–9]. Capture fisheries, particularly inland capture fisheries represent the most important source of fish supply in many countries in SSA. Nonetheless overfishing, lack of effective fisheries management, and water and land-use change have caused many fisheries in Africa to decline or stagnate. Key drivers negatively affecting inland capture fisheries in Africa include hydropower developments, deforestation, mining, introduction of invasive species and environmentally damaging fishing gear [10–12]. At the same time, inland fisheries statistics are recognized as failing to capture the productivity and values of the sector [13], and require improvement. Besides capture fisheries, aquaculture has a long history in SSA. For many decades, however, government and donor interventions focused almost exclusively on the promotion of small-scale aquaculture for improving household food and nutrition security at household level. The success and sustainability of these interventions has remained marginal, due to heavy subsidies whilst disregarding the importance of enabling environments and infrastructure to improve access to inputs, extension services, and markets [14–17].

Current trends in fish production, consumption and trade suggest that fish is among the most traded food commodities and fish trade is playing an increasingly important role to improve the welfare of local and global...
fish food systems for developed and developing countries [18]. The de-
veloping countries tend to export high-value seafood to developed
markets, while retaining and importing lower-value seafood products to
achieve food security goals [19]. In quantity terms, fish imports by
African countries have surged sharply in recent years and if current
production, consumption and trade trends continue, 50% of fish for
human consumption in Africa is projected to be met by imported fish
products by 2050 [7]. Africa has become China’s second most important
tilapia export market after the United States [20]. The increasing demand
for fish in Africa has also created opportunities for re-inventing African
aquaculture development. Recently, there is evidence that aquaculture
growth in Africa has speeded up [8]. A number of countries in SSA such
as in Ghana, Kenya, Nigeria, South Africa, Uganda, and Zambia have
experienced rapid growth in commercial aquaculture as a market /de-
mand response [21–23]. These emergent trends in aquaculture devel-
opment have contributed largely to the seven-fold increase in aqua-
culture production in Sub-Saharan Africa during the last decade, with an
average annual growth rate of 21% [24].

The ongoing transformations in fish supply, and its impacts on fish
availability, ultimately affect the contribution of fish to food and nutrition
security in SSA. Hence, much of the future development will depend on
decision makers to provide guidance on how to sustainably value existing and emergent opportunities in aquaculture and fisheries
and thus to improve the supply of fish to a growing population. Under this
development context, there are substantial policy questions that need to be
addressed: 1) how do capture fisheries and aquaculture production sys-
tems in African countries respond to the increasing fish demand in the
future, taking into account complex interactions of domestic supply, de-
mand, and international seafood trade? 2) What are the potential impacts
of new market driven aquaculture development on African food and nu-
trition security? 2) Under what circumstances can capture fisheries be
sustained or declined? This understanding is critical to provide policy
recommendations for sustaining future fish supply and for exploring sus-
tainable aquaculture and fisheries development options in Africa.

The objective of this study was to provide a future picture of the fish
sector in Zambia by projecting the dynamics of fish supply and demand,
and draw policy implications that can be of interest for policy makers in
Zambia and other countries in SSA at a comparable stage of develop-
ment. Zambia has recently experienced a growing demand for fish, which
is largely triggered by the growing population and an emergent urban
middle class within Zambia and also neighboring countries. To satisfy the
demand, a supply response in aquaculture has been observed whereby
medium to large scale farms have started to upgrade operations and
successfully managed to increase aquaculture output [22]. In 2014,
Zambia has become the sixth largest producer of farmed fish (mainly
breams – a local name for tilapia) in Africa and the largest in the in the
Southern African Development Community (SADC). Whilst the small-
scale aquaculture sector faced a 27% drop in production between 2011
(4060 t) and 2014 (2954 t), the commercial sector grew at an annual
growth rate of 11.6% from 1500 t (1996) to 13,600 t (2014) and now
accounts for the largest contribution (71%) to the overall estimated
aquaculture production in the country. Aquaculture contribution to the
total fish supply has increased from 5% in 1995 to 20% in 2014 [25].

By 2014, the main source of fish supply for Zambian consumption is
inland capture fisheries (80,000 t and accounted for 50% of fish supply
in 2014), but capture outputs are stagnant and started to show signs of
severe overfishing [12]. A sudden and sharp increase in Zambian fish
supply has been largely contributed by fish imports, which have grown
14-fold between 2004 and 2014 (55,200 t). In total, fish supply in 2014
accounted for approximately 158,000 t of fish. Hence Zambia’s per ca-
pita fish supply was estimated at 11 kg per capita per year for 2014,
compared to 6.8 kg in 2011. If without fish imports, the per capita supply
would drop by 3.9 kg.

Although the per capita fish supply rates are relatively low com-
pared to the global average of 20 kg per capita per year [26], fish ac-
counts for over 20% of animal protein supplies particularly for low-
income Zambian families [27] is a crucial source for vitamins and mi-
cronutrients [28]. According to Zambian government statistics, the
prevailing of stunting among young is reported over 40% [29]. Se-
curing fish supply and increasing fish consumption in Zambia is hence
expected to stimulate positive health and development outcomes, par-
ticularly the marginalized and vulnerable population.

2. Material and methods

There are a number of models developed to produce fish supply and
demand projections at the country level (e.g., AsiaFish model [30–32])
and the global level (e.g., IMPACT fish model [7,8,33]). Calibrating these
models requires a large number of behavior parameters, including how
outputs and inputs in each production category respond to output and
input prices, and also how each component in the demand for each
species varies with income and prices. Most of these parameters must be
estimated from real-life data using econometric techniques [30] which
is difficult in many developing countries, but particularly those in SSA. For
instance, our literature review shows that data about the fish sector of
Zambia (the country used for our empirical analysis) is often rough, of
poor quality, or exhibits inconsistencies if verified from different sources.
Information about basic behavioural parameters (e.g., how consumers
and producers respond to changes in price) is scant or not available.

To overcome this challenge, our approach was to minimize the data
and parameters required for calibration while maintaining the key
objective of the model, i.e., being able to analyze the fish supply-de-
mand interaction and evaluate policy impacts on the Zambian fish
sector. To do so, the analysis was limited to main fish species groups
and production types, collected the best reliable information, and then
adjusted the modelling specification to fit with what is available.
Collaboration with the Department of Fisheries, Ministry of Fisheries
and Livestock of Zambia to collect and compare data from various
sources to eliminate inconsistencies is essential. As a result, consistent
data for year 2014 were obtained which covers five key fish species,
each of which can possibly be produced with three types of aqua-
culture, or naturally caught in five fishing sites in Zambia. This data will
be described later in this section. More disaggregated or longer data
series was not available or unreliable.

Our empirical model in this paper is built to best fit with the reliable
data in 2014, which is used as the base year, and other available in-
formation. Following the earlier frameworks of Dey et al. [30] and
Rosegrant et al. [34], a multi-market equilibrium feature was formal-
ized to reflect the interaction of supply and demand on all related
markets. However, instead of using the dual modelling approach, our
model uses the primal approach for production and consumption sec-
tors which is less data and parameter demanding. In particular, the
model derives the Marshallian demand function of a utility maxima-
ization problem, which does not rely on a long series of data to estimate
the demand as required in the dual approach, though at a cost of re-
duced flexibility. Furthermore, the primal approach can help overcome
the shortcoming of the dual approach which often uses a linearized
estimate of the demand function, and so it may not be pertinent to non-
linear and (long-horizon) dynamic models [35,36]. The production
function was also specified for each fish species group with each pro-
duction method to derive how fish producers respond to changes via
prices. To overcome this challenge, our approach was to minimize the data
and parameters required for calibration while maintaining the key
objective of the model, i.e., being able to analyze the fish supply-de-
mand interaction and evaluate policy impacts on the Zambian fish
sector. To do so, the analysis was limited to main fish species groups
and production types, collected the best reliable information, and then
adjusted the modelling specification to fit with what is available.
Collaboration with the Department of Fisheries, Ministry of Fisheries
and Livestock of Zambia to collect and compare data from various
sources to eliminate inconsistencies is essential. As a result, consistent
data for year 2014 were obtained which covers five key fish species,
each of which can possibly be produced with three types of aqua-
culture, or naturally caught in five fishing sites in Zambia. This data will
be described later in this section. More disaggregated or longer data
series was not available or unreliable.

Our empirical model in this paper is built to best fit with the reliable
data in 2014, which is used as the base year, and other available in-
formation. Following the earlier frameworks of Dey et al. [30] and
Rosegrant et al. [34], a multi-market equilibrium feature was formal-
ized to reflect the interaction of supply and demand on all related
markets. However, instead of using the dual modelling approach, our
model uses the primal approach for production and consumption sec-
tors which is less data and parameter demanding. In particular, the
model derives the Marshallian demand function of a utility maxima-
ization problem, which does not rely on a long series of data to estimate
the demand as required in the dual approach, though at a cost of re-
duced flexibility. Furthermore, the primal approach can help overcome
the shortcoming of the dual approach which often uses a linearized
estimate of the demand function, and so it may not be pertinent to non-
linear and (long-horizon) dynamic models [35,36]. The production
function was also specified for each fish species group with each pro-
duction method to derive how fish producers respond to changes via
prices. To overcome this challenge, our approach was to minimize the data
and parameters required for calibration while maintaining the key
objective of the model, i.e., being able to analyze the fish supply-de-
mand interaction and evaluate policy impacts on the Zambian fish
sector. To do so, the analysis was limited to main fish species groups
and production types, collected the best reliable information, and then
adjusted the modelling specification to fit with what is available.
Collaboration with the Department of Fisheries, Ministry of Fisheries
and Livestock of Zambia to collect and compare data from various
sources to eliminate inconsistencies is essential. As a result, consistent
data for year 2014 were obtained which covers five key fish species,
each of which can possibly be produced with three types of aqua-
culture, or naturally caught in five fishing sites in Zambia. This data will
be described later in this section. More disaggregated or longer data
series was not available or unreliable.

2.1. Data

The production data for year 2014 are presented in Table 1. They
cover five fish groups which are referred to by their local names, i.e.,
breams (Tilapia; Oreochromis spp.), kapenta (Limnothrissa miodon and
Soliolothrissa tanganicae), catfish (Clarias spp.), buka (Luciolytes spp.)
and other fish. Throughout this paper, we use a five-element set to refer to
the fish groups, i.e., \(S = \{ \text{Breams, Kapenta, Catfish, Buka, Other fish} \} \).

There are two production techniques, namely aquaculture and (wild) catch. Aquaculture is further classified into three types, i.e., land-based commercial, water-based commercial, and small-scale production. Wild catch includes five fishing sites, namely Tanganyika, Bangweulu, Kariba, Mweru, and other locations. There are eight production categories in total, and we use an eight-element set to refer to the production categories, i.e., \(PC = \{ \text{land, water, small, Tanganyika, Bangweulu, Kariba, Mweru, Other locations} \} \). The first three elements are aquaculture types, and the last five elements are wild-catch.

There are 40 combinations of the categories and the fish species groups. Each of the 40 combinations is termed a ‘sector’. Not all sectors are active, or in other words, not all species groups are produced in all production categories. In fact, there are only 23 active sectors (Table 1 has 23 data rows). To distinguish active and non-active sectors, 40 binary variables \(w(PC, S) \) were used, one for each sector, to indicate whether the sector is active (value 1) or inactive (value 0).

The production sectors may use different sets of inputs. For example, the aquaculture sectors use five types of inputs namely seed, feed, labor, fuel, and sector-specific inputs (e.g., investment in expertise or facility). Wild-catch sectors only use labor, fuel and sector-specific inputs. Thus, the data for seed and feed in the wild-catch sectors are zero.

Table 2 shows the fish consumption, export and import for year 2014, one row for each of the five species groups. Fish consumers can consume domestically produced or imported products. Domestic products can also be consumed locally or exported. Data in Tables 1 and 2 have been cross-checked to ensure consistencies, i.e., the sum of domestic production and import equals to the sum of consumption and export.

2.2. Model specification

2.2.1. Production and production inputs

As described in Section 2.1, there are 40 production sectors, but only 23 are active, and the 17 sectors are inactive. The outputs of inactive sectors are zero, and this is formalized in Eq. (1) where \(q^e(PC, S) \) is the output of each species in each production category at time \(t \).

\[
q^e(PC, S) = 0 \text{ if } w(PC, S) = 0 \tag{1}
\]

For declaring inputs, a four-element set \(CI = \{ \text{Seed, Feed, Labor, Fuel} \} \) was denoted for the inputs and \(x^CI(PC, S, CI) \) for the quantity of each input used in each sector at time \(t \). These quantities are zero if the inputs are not used, or if the sector is not active. The input demands of active sector are presented in Eq. (2). From here when a full description of set has been defined, the shortcut (.) for compactness was used, unless when purposely avoiding possible confusions.

\[
x^CI(PC, S, CI) = q^e(PC, S)A^CI(.) \tag{2}
\]

\(A^CI(.) = A^CI_{\text{MaxYear}} \left(\frac{1}{1 + g^\epsilon_{CI}(PC, S, CI)} \right)^{\frac{1}{\epsilon^CI}} \) is the required quantities of each input to produce one unit of output (or equivalently, the inverse productivity coefficients of the inputs) at time \(t \); \(g^\epsilon_{CI}(.) \) represents the annual rate of technological progress, i.e., less inputs required to produce 1 unit of output. Please note that the specification in Eq. (2) allows...
different rates of technological progress across the inputs. Here calculating the input demands via the levels of inputs required to produce one unit of output assumes the inputs, e.g., seed, feed, and labor, are to be used in certain proportions [37]. This assumption is widely used in multi-market economic modeling such as the global GTAP model [38] and the national ORANI model [39] because it reflects a realistic fact that in highly specialized sectors input substitutability (e.g., between labor and seed or between fuel and feed) is not always possible.

2.2.2. Fish consumption sector

To model the consumption sector, i.e., demand for fish, a double-layer structure for a representative consumer was used in this study. The double-layer structure has been used intensively to model consumer demands which can be met by domestic and imported supplies. Here consumers decide the quantity of each good in order to maximize the utility with a certain budget, e.g., how much to spend on each species and then within each species how much to spend on domestic and imported products [30]. Both layers can be modeled using the Armington preference [40] which allows for a certain level of substitutability, e.g., when a product becomes more expensive, the consumer will substitute it with similar products. The two-layer optimization for the consumer decision is presented in Eqs. (3) and (4).

\[
\max_{Q^\text{Dom}(s),Q^\text{Im}(s)} \left[\sum_s A^\text{Com}(s) e^\text{Com}(s) \frac{(\frac{\partial Q^\text{Dom}(s)}{\partial e^\text{Com}(s)})^2}{\sigma^2(s)} \right] \quad \text{s.t.} \quad \sum_s Q^\text{Dom}(s) = \eta_i
\]

where \(e^\text{Com}(s) \) is a 5-element vector of the spending on each species (both domestic and imported if any) at time \(t \); \(\eta_i = \eta_{\text{Initial}}(1 + g_i)^t \) is the total spending on fish of each population unit at time \(t \), which grows at an annual rate \(g_i \); \(\sigma^\text{Dom} \) is a scalar constant-elasticity-of-substitution (CES); \(A^\text{Com}(s) \) is the vector of coefficients which can, without the loss of generality, be normalized such that \(\sum_s A^\text{Dom}(s) = 1 \).

\[
\max_{Q^\text{Dom}(s),Q^\text{Im}(s)} \left[\sum_s A^\text{Dom}(s) Q^\text{Dom}(s) \frac{(\frac{\partial Q^\text{Dom}(s)}{\partial Q^\text{Dom}(s)})^2}{\sigma^2(s)} \right] + \sum_s A^\text{Im}(s) Q^\text{Im}(s) \frac{(\frac{\partial Q^\text{Im}(s)}{\partial Q^\text{Im}(s)})^2}{\sigma^2(s)} \quad \text{s.t.} \quad B^\text{Dom}(\cdot) Q^\text{Dom}(\cdot) + B^\text{Im}(\cdot) Q^\text{Im}(\cdot) = e^\text{Com}(\cdot)
\]

where \(Q^\text{Dom}(s) \) and \(Q^\text{Im}(s) \) are the consumption quantities of domestic and imported fish by a representative consumer respectively; \(\sigma(s) \) is a vector of CES coefficients, one for each species group; \(A^\text{Dom}(s) \) and \(A^\text{Im}(s) \) are vectors of coefficients which can, without the loss of generality, be normalized such that \(A^\text{Dom}(s) + A^\text{Im}(s) = 1 \).

Solving the optimization in Eqs. (3) and (4) is a straightforward calculus exercise though a little lengthy. The quantity demanded for domestically produced and imported fish by a representative consumer can be derived as in Eqs. (5) and (6):

\[
Q^\text{Dom}(s) = e^\text{Com}(s) \left(\frac{\frac{\partial Q^\text{Dom}(s)}{\partial e^\text{Com}(s)}}{\sigma^\text{Dom}(s)} \right)^{\eta_i} + e^\text{Com}(s) \left(\frac{\frac{\partial Q^\text{Im}(s)}{\partial e^\text{Com}(s)}}{\sigma^\text{Im}(s)} \right)^{\eta_i}
\]

\[
Q^\text{Im}(s) = e^\text{Com}(s) \left(\frac{\frac{\partial Q^\text{Im}(s)}{\partial e^\text{Com}(s)}}{\sigma^\text{Im}(s)} \right)^{\eta_i} + e^\text{Com}(s) \left(\frac{\frac{\partial Q^\text{Im}(s)}{\partial e^\text{Com}(s)}}{\sigma^\text{Dom}(s)} \right)^{\eta_i}
\]

where \(e^\text{Com}(s) = \eta_i \sum_s A^\text{Com}(s) \frac{(\frac{\partial Q^\text{Dom}(s)}{\partial e^\text{Com}(s)})^2}{\sigma^2(s)} \) with \(\eta_i = \frac{\partial Q^\text{Dom}(s)}{\partial e^\text{Com}(s)} \).
2.2.5. Equilibrium conditions

Fish market equilibrium conditions require the total (domestic) supply from all production categories be equal to the consumption demand for domestic fish plus export as in Eq. (14).

$$\sum_{PC} q^e_i (PC, S) = q^{Dom}_i (S) + q^{Exp}_i (S)$$

(14)

where $q^e_i () = q^{Dom}_i (S) \prod_{t=1}^T (1 + g^C_i (\cdot))$ with $q^{Dom}_i (S)$ being the supply quantity at the base year, and $g^C_i (\cdot)$ being the growth rate of the supply at year i. Please note that the specification of Eq. (14) allows the annual growth rate of input supply (i.e. annual expansion rate of a production sector) to vary inter-annually. This flexibility helps control for the situation that the Zambian government might use the expansion growth rate for fishery sectors as a time-varying policy parameter to intervene the equilibrium fish market.

2.3. Model calibration

The calibration of our multi-market equilibrium follows the process described by Dawkins et al. [41]. Specifically, the productivity coefficients in Eq. (1) and the two-layer preference structure in Eqs. (4) and (5) are calibrated by combining the data in Tables 1 and 2 with modeler-specified behavioural parameters. The number of the behavior parameters has been reduced due to the specific functional forms, and there are only five types of parameters that need to be specified. They are the elasticity of export demand (ε^E), the elasticity-of-substitution for layer 1 and layer 2 in the consumption preference (ε^{Com} and ε), and the elasticity of supply for the common and sector-specific inputs (ε^C and ε^S).

The export elasticity was specified to be $\varepsilon^E (\cdot) = -0.6$, which implies that if the price increases by 1%, the export quantity will reduce by 0.6% [42]. It is also specified that $\sigma = 1.5$ for the CES coefficient for layer 1 (substitutability between domestic and imported products), which similar to the estimate for agricultural products in South Africa, including fish, by Gibson [43] and comparable to the estimate of other countries, e.g. the Philippines [44]. Tune for the CES coefficient for layer $\sigma^{Com} = 2.224$, based on a specific estimate of price elasticity of kapenta in Zambia [45]. The elasticity of labor supply is set to be infinity, implying that the real wage is exogenous, consistent with the high unemployment rate in Zambia – always above 10% [46] and the fact with the fish sector accounts for only 1% in Zambia’s GDP [27]. The elasticity of fuel supply is also set to be infinity given the fact Zambia is a small economy and must be a price taker in the world energy market. The elasticity of feed, seed and sector-specific inputs will vary across scenarios and will be described in the analysis.

To calibrate the dynamics of the fish demand over the projection period until 2030, the annual dynamics of population and of per-capita income as well as the elasticity of fish consumption to income are incorporated into the model. It is assumed that Zambia population will increase by 2.81% a year ($g = 0.0281$), the average demographic growth rate over 2000–2014 period [46]. Meanwhile, the average GDP growth rate of Zambia was 6.76% implying per-capita income growth of 3.95% a year, so we use this number to calibrate the growth of per-capital income in our model. The elasticity of fish consumption to income is specified to be 0.834 [45] implying that when the income increases by 1%, fish consumption will increase by 0.834% ceteris paribus. This number is comparable to the estimate for Africa [47], and that gives $g^C = 0.0395 + 0.01 = 0.0495$

3. Scenarios

Based on data and information collected from various sources, published literature and stakeholder consultations, 2014 was chosen as the base year, and the model generates annual projections to 2030. The business-as-usual scenario (BAU) was defined such that all aquaculture outputs grow at 6.76% per year which is the same as the gross domestic product (GDP) growth rate; the output capture fisheries output was set as stagnant with zero growth rate over the projection period. On the demand side, the income and population growth rates were assumed at 6.76% and 2.81% to 2030, respectively.

Alternative scenarios to be assessed with the model were selected via a stakeholder consultation process combined with an expert information approach [48]. Two participatory workshops were conducted in Lusaka in 2016 to explore future fish supply and demand scenarios in Zambia. These alternative scenarios are summarized as below.

The first scenario, optimistic GDP growth (HiGDP) assumes gross domestic product (GDP) grows at 9.76% per year, 3% higher than that in the BAU scenario, ceteris paribus. The objective of this scenario is to understand how fish consumption, trade and prices respond to increasing domestic income, and what the implications are for consumers.

The second scenario, slower GDP growth (LowGDP) hypothesizes that GDP grows at only 3.76% per year to 2030 and population growth and supply targets remain the same as those in the BAU scenario. This scenario simulates impacts of weaker macro-economic performance on fish demand, imports and prices.

The third scenario, named as stronger fish import regulation (HiTAX), is to evaluate the impact of import tariffs. Tariff is a first-line instrument to control trade deficit which has been used widely in trade policies, and it is also available for the Zambian government to apply this instrument toward the objective of curbing the fish deficit. This scenario assumes that the Zambian government increases fish import tariffs by 50% to regulate fish imports, whilst the other assumptions remain the same as those assumed in the BAU scenario.

The fourth scenario, faster commercial aquaculture growth (HiAQUA) postulates that commercial private sectors increase their investments in the aquaculture sector so that land based and water based commercial aquaculture grows at 15% per year. Other assumptions remain as those in the BAU scenario.

The fifth scenario, capture fisheries output growth at 1.5% (HiCAP) involves successful capture fisheries enhancement implemented by the government as well as fisheries development and conservation communities so that capture fisheries output can increase 1.5% per year to 2030. Other assumptions remain as those hypothesized in the BAU scenario.

This scenario is motivated by the fact that capture fisheries play an essential role in food security in Zambia and SSA and that fisheries development interventions can lead to improvements in fisheries outputs and related ecological, social and economic performance indicators [49].

4. Results

4.1. Business-as-usual (BAU)

Findings of the Zambian fish supply and demand modelling projections show that under the BAU scenario, fish demand in Zambia is
projected to be strong to 2030. With aquaculture production growth rate following GDP growth rate at 6.76% per year (Table 3), aquaculture production is projected to increase from 19,300t in 2014 to 54,900t in 2030 (Table 4); breams fish price will rise at 3.0% per year and fish imports will also continue to increase from 55,200t to 173,900t in 2030 (projected to increase at 7.4% per year on average). As presented in Table 4, per capita fish consumption is projected to rise from 10.4 kg in 2014 to 13.3 kg in 2030 (projected increase at 1.6% per year on average). Under the BAU scenario, fish imports are projected to be the main contributor of fish for consumption in Zambia by 2030.

4.2. Optimistic GDP growth (HiGDP)

Under optimistic GDP growth scenario (HiGDP), where GDP growth rate was assumed at 9.76% and other assumptions remained as in the BAU scenario, per capita fish consumption is projected to grow at 3.40% per year (Table 3), increasing from 10.4 kg per capita per year in 2014 to 17.7 kg per capita in 2030 (Table 4). Fish prices (e.g., breams) are projected to increase at 5% per year to 2030. Stronger fish demand in the HiGDP scenario compared to the BAU scenario will trigger higher import demand for fish, which is projected to grow at 10.6% per year (projected imports increase from 55,200t in 2014 to 277,300t in 2030).

4.3. Slower GDP growth (LowGDP)

Under the slower GDP growth (LowGDP) scenario, per capita fish consumption is projected to remain the same from 2014 to 2030, at 10.4 kg. Due to lower fish demand, fish prices are projected to grow at 0.9% per year, which is lower than that in the BAU. Fish imports are projected to increase at 4.2% per year so that projected import volume increases from 55,200t to 106,900t. Under this scenario, domestic fish production from capture fisheries and aquaculture (137,500t) is projected to remain the main contributor to fish consumption in the country by 2030.

4.4. Stronger fish import regulation (HiTAX)

With stronger fish import tax (assumed 50% increase in import tax), per capita fish consumption is projected to increase at a lower rate compared to that of the BAU scenario, at of 0.8% per year from 2014 to 2030. Consequently per capita fish consumption increases from 10.4 kg in 2014 to 11.8 kg in 2030. With higher import tax, fish import is projected to increase at a slower rate (5.9% per year to 2030) compared to the BAU scenario (7.4%). Fish import volume is projected to increase from 55,200t in 2014 to 138,900t in 2030. Fish prices are projected to increase higher than those projected in the BAU scenario (Table 3). With other assumptions remaining as in the BAU scenario, imposing higher fish import tax triggers higher consumer fish prices and a slowdown in the per capita fish consumption growth rate compared to the BAU scenario.

4.5. Faster commercial aquaculture growth (HiAQUA)

With assumptions of stronger growth rate of 15% per year for land based and cage based commercial aquaculture sectors, aquaculture output is projected to increase from 19,300t in 2014 to 143,700t in 2030 (Table 4). Per capita fish consumption is projected to grow at 3% per year, increasing from 10.4 kg in 2014 to 16.5 kg in 2030. Fish imports are projected to grow at a slower rate of 6.9% compared to that in the BAU scenario (7.4%). Consumer price of breams (tilapia) is projected to decline at 0.4% per year and prices of other fish groups are also projected to grow at slower rates compared to those in the BAU scenario over the projection period (Table 3). Under this scenario, consumers enjoy lower fish prices. However, producers will be forced to improve production efficiency (e.g., technological innovations in seed production, feed production and aquaculture management practices and value chain alignment) in order to be competitive in domestic markets.

4.6. Capture fisheries output growth at 1.5% (HiCAP)

The last scenario is a case where capture fisheries output is assumed to grow at 1.5% per year due to improved capture fisheries management. Capture fisheries is projected to grow from 80,800t in 2014 to 102,600t in 2030. Aquaculture production remain as assumed in the BAU scenario which grow from 19,200t in 2014 to 54,900t in 2030. Under this scenario, per capita fish consumption is projected to increase at 1.86% per year (increase from 10.4 kg in 2014 to 13.3 kg in 2030) which is higher than that projected in the BAU scenario. Fish import is projected to increase from 55,200t in 2014 to 167,100t in 2030, growing at a slower rate compared to that projected in the BAU scenario (7.17% versus 7.44). Domestic fish prices are projected to increase at slower rates compared to those projected in the BAU scenario. Results from the HiCAP scenario highlight that in addition to supporting sustainable aquaculture development, sustaining capture fisheries is also important for nutrition and food security of the Zambian people.

5. Discussion

Modelling fish supply, demand and trade at the country level is instrumental in understanding of structural changes such as technology innovation and policy reform in fisheries and aquaculture sectors as well as the implications of development interventions and shocks on fish food and nutrition security. The Zambia fish sector model that developed is an analytical tool for exploring how future fish supply and demand trends in Zambia might unfold, and how these trends might...
influence fish consumption, trade and prices as well as the implications on the poor and vulnerable consumers. Such analysis is important for developing interventional options for sustaining fish supply in Zambia (capture fisheries, aquaculture and fish import) and other countries in SSA. Our model is a complimentary approach to the fish sector model (AsiaFish) developed by Dey et al. [30,31].

Our modelling analysis confirms that demand for fish in Zambia will continue to increase, driven by population growth, income growth and diet transformation towards consuming more animal based protein. Given that capture fisheries is considered more or less stagnant, aquaculture is projected to remain the main source of domestic fish supply growth in Zambia. Over the projection period from 2014 to 2030, aquaculture production can reach 55,000 t in 2030 under the BAU scenario (with an annual projected growth rate of 6.76%). Given that aquaculture starts from a low base (20,000 t in 2014), domestic fish supply in Zambia continues to depend on capture fisheries which causes a substantial fish deficit that is projected to be fulfilled by increasing fish imports. By 2030, fish import is projected to reach 173,900 t (Table 4) and become the main source of fish for consumption in Zambia if capture fisheries remains stagnant and aquaculture experiences a moderate growth rate of 6–7%. Future of fish demand in Zambia is strongly connected to population and domestic economic growth, and also developments in international seafood trade markets. In a pessimistic economic growth scenario, it is projected that there is modest increase in per capita fish consumption over the projection period, with Zambia remaining significantly below global norms for fish consumption.

Our hypothetical scenarios show the importance of sustaining fish supply for food and nutrition security within the Zambian population. This can be realized via interventions to enhance capture fisheries, facilitate fish imports and notably promote sustainable aquaculture development in Zambia. Given that wild capture fisheries remain the dominant supplier of fish for consumption in Zambia, a small increase in wild catch output as we demonstrated in the HiCAP scenario (wild capture fish increases 1.5% per year) will have positive impacts on per capita fish consumption and moderate the effect of fish price increases. As capture fisheries provides direct food to poor and vulnerable populations in the country and with an estimate of 25,000 artisanal fishers and 30,000 others participate in fish processing and trading in Zambia [50], interventions to improve fisheries management and governance will help address food security and rural poverty in Zambia.

Increasing fish imports have raised concerns and debates on fish trade policy in Zambia, nonetheless our analysis shows the importance of fish imports to the country, especially the price of fish, and thus access to poor and vulnerable consumers. An increase in fish import tax is projected to reduce fish imports and induce an increase in consumer fish prices, and consequently slowdown the growth of per capita fish consumption. Reviewing historical trends, Kaminski et al. [22] show that over the period 2004–2014, Zambia fish imports have grown 14 times (with an average increase of 30.5% per year) and played an important role in increasing fish supply and moderating the effects of fish price increases.

Rapidly increasing demand for fish products in Zambia creates diverse opportunities for investments in aquaculture value chains that can help producers and traders become more competitive and also improve consumer welfare by enjoying higher fish supply for consumption [23]. Our analysis shows that rapid aquaculture growth can moderate the effects of increasing fish price on consumers due to income and population growth, similar to other studies [51]. This effect might impose downward price pressure on domestic fish producers in Zambia for improving production efficiency to stay in business. Combining with the effects of increasing fish imports, domestic fish producers particularly, small scale aquaculture farmers will face higher competition. Under this production environment, commercial large-scale producers can produce cheaper (output increases, the cost of producing each unit goes down) and tolerate risks associated with declining prices.

Increasing efficiency and productivity to lower costs per production unit is a must. Slumping small scale aquaculture development in the past suggests that sustained investments by the private sector is critical to enable innovation, productivity growth and reduced production costs. Public interventions in the form of stimulating public and private partnerships are essential to create a sound enable environment for domestic producers particularly small holders while addressing food security and undernutrition issues prioritized by the government [28].

The multi-market, multi-species, dynamic model developed in this study can be applied to other developing countries where fish supply-demand data are lacking, particularly those in SSA where fish supply and demand projections are urgently needed to inform fisheries and aquaculture planning and priority setting. The proposed primal modelling approach requires a minimal amount of data by specifying the production technology and consumer preference. The dual approach which relies on estimating parameters from data is more flexible, but it will be difficult if time-series data are not available or not enough for estimating behavioural parameters [52]. In many developing countries, data availability and reliability pose an obstacle to economic modelling efforts; so, when modellers do not want to borrow too many parameters from other countries because their applicability is much more limited outside of the specific context where they are estimated, the model developed for the Zambian fish sector analysis could be a feasible approach.

6. Conclusion

Fish supply and demand scenario analysis presented in this paper suggests that demand for fish in Zambia is likely to increase steadily, signalled by projected increase in fish prices to 2030. While wild capture fisheries presently remain the dominant supplier, aquaculture and fish import are projected to play more important roles in sustaining fish supply to meet increasing demand to 2030. Increasing import tax to stimulate domestic aquaculture investment cannot solve fish deficit but can cause inflation (increasing fish prices). Depending on wild-catch will result the fish consumers vulnerable to fish supply. Investing in aquaculture development and improving capture fisheries management could be solutions for improving food and nutrition security in Zambia. The fish sector model developed for the Zambia presented in this study could be a feasible approach for analysing fish supply and demand scenarios for drawing fish food and nutrition security implications in developing countries particularly those in SSA.

Acknowledgements

This research is a contribution to the CGIAR Research Program on Fish Agrifood Systems (FISH). Funding support to the study was provided by the German Federal Ministry for Economic Cooperation and Development (BMZ) through the Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ), on a project entitled “Aquaculture and the Poor: Improving Fish Production, Consumption and Nutrition Linkages” (2014–2016) and the CGIAR Research Programs on Policies, Institutions and Markets (PIM) and Fish Agri-food Systems (FISH). The authors also highly acknowledge the partnership and contributions of a wide range of public, private, community and civil society members and organizations in Zambia to the research.

Conflict of interest

None.

References

