The roots of the WorldFish Center lie in Asia and the Pacific, where we started as ICLARM in 1977. But as the Center has developed and our global reach has expanded, so our focus on poverty alleviation and food security has drawn us to invest steadily in Africa. From starting our first work in Malawi in 1986, through projects in Sierra Leone and Ghana between 1990 and 1995, the opening of our regional center at Abbassa in Egypt in 1997, to the establishment of our new program in Cameroon in 2000, we have built a substantive program and presence on the African continent.

Looking forward to the challenges facing fisheries and aquaculture in the coming decades, the Center has long recognized that our investment in Africa needs to be increased even further. To guide this investment we have now developed a Strategy for Africa and West Asia for 2002-2006 and are currently moving ahead to implement this. The present issue of NAGA introduces the Strategy, while also reporting on a number of key issues that the Center is working on to address.

Africa's capture fisheries contribute to the livelihoods of some 15 million people and provide the principal source of animal protein for many millions more. Well managed, these resources can continue to play an important role in nutrition and livelihoods across large parts of the continent, notably in the coastal regions, along the shores of lakes and reservoirs, and throughout the continent's extensive river systems. Yet many of these resources are undervalued and rarely feature in planning and management processes. The articles by Rudy van de Elst, Robin Welcomme, and Christophe Bene and Arthur Neiland explore several of the critical issues facing these systems and point towards approaches that may help address these.

Despite their importance, however, Africa's capture fisheries alone cannot meet the growing demand for fish. The per capita consumption of fish has declined in several countries in Africa in recent years. WorldFish believes that aquaculture has great potential to meet this demand and become an effective component of agriculture and rural development strategies across large parts of the continent. However, the Center's experience in Malawi, Ghana and Cameroon underlines that this will only happen where the right technical solutions are applied in social, economic and institutional contexts that are conducive to aquaculture adoption. The article by D.M. Jamu and O.A. Ayinla examines this potential.

By developing our new regional strategy, the WorldFish Center recognizes the need for long-term investment in Africa. We also recognize the importance of building and working through effective partnerships in order to achieve the breadth and depth of impact that we believe is required. Over the course of the coming years we will be strengthening our partnerships in Africa and we invite the readers of NAGA who are working in the region to contact the Center.

Meryl J. Williams
WorldFish Center
contents

articles

4 Investing in Africa: the WorldFish Center’s African Strategy in summary
 • P. Dugan

9 Potentials for development of aquaculture in Africa
 • D.M. Jamu and O.A. Ayinla

14 Local solutions to challenges of west Indian Ocean fisheries development
 • R. van der Eist

18 Valuing Africa’s inland fisheries: overview of current methodologies with an
 emphasis on Livelihood Analysis
 • C. Béné and A.E. Neiland

22 River fisheries in Africa: their relationship to flow regimes
 • R.L. Welcomme

27 FishBase Article
 FishBase species profile: Clarias gariepinus (Burchell, 1822) North African catfish
 • FishBase team

28 ReefBase Article
 Using ReefBase to create customized maps
 • ReefBase team

31 INGA Article
 Potential of genetics for aquaculture development in Africa
 • W. Changadeya, L.B. Malekano and A.J.D. Ambali

news

36 INGA News

38 NTAFP News

39 NAGA News

40 New Publication

41 Announcements

information

42 Bibliography

47 Indexes

49 Selected Websites
Investing in Africa: the WorldFish Center's African Strategy in summary

P. Dugan

Abstract

Across much of Africa, freshwater and coastal fisheries provide an important source of food and livelihood for many millions of people. In addition, the aquaculture potential of the continent has only recently begun to be developed. To help sustain these capture fisheries, support the emergence of aquaculture and foster the contribution of both to sustainable livelihoods and improved food security, the WorldFish Center is increasing its investment in Africa. The framework for this investment is provided by a new Strategy for Africa and West Asia 2002-2006 that identifies priorities for the Center's work in rivers and floodplains, lakes and reservoirs, coastal fisheries, aquaculture, policy research and capacity building. The present article summarizes the issues being addressed by the Center and describes initial research priorities.

Introduction

Africa's challenges are very much in the news and are the focus of attention for many in the international development community. From the ongoing conflicts in West and Central Africa to food shortages and famine in Ethiopia and southern Africa, the HIV/AIDS pandemic, persistent environmental degradation and the underlying slow pace of economic development, the scale of the problems is daunting. The launching of the New Partnership for Africa's Development (NEPAD) as a defining framework for the continent's economic and social development and a mechanism for stronger regional cooperation, has opened up new opportunities for the continent and a growing sense of urgency that these need to be seized. For the international agriculture research community, and notably for the CGIAR, this combination of challenge and opportunity has provided an important incentive to reassess where our efforts have the greatest impact. At the WorldFish Center, we have given careful thought to what the challenges in Africa mean for fisheries and aquaculture and the role of research and extension in responding to them.

Across Africa fisheries and aquaculture supply high quality food at low cost to millions of people, generate income for farming and fishing households, and play a central role in many local and national economies. Capture fisheries dominate this picture, providing well over 90 per cent of fish harvested in the region (FAO 1999). However, aquaculture has grown steadily in recent years. For example, production increased from 60,000 t in 1990 to 340,000 t in 2000 in Egypt and from 7,000 t in 1990 to over 20,000 t in 1998 in Nigeria (FAO 1999).

Despite the productivity and importance of the region's capture fisheries and the promising though slow emergence of aquaculture, the current supply of fish falls short of demand. In Africa as a whole, per capita availability of fish is declining and in some countries the average diet contained less fish protein in the 1990s than in the 1970s. Africa is the only geographic region of the world where this has occurred. Current projections of supply and demand to the year 2020 indicate that the gap between supply and demand will continue to grow, even if current harvests of wild caught fish can be maintained and aquaculture continues to progress at the current rate (Ye 1999).

However, even these are fragile assumptions. There is currently widespread concern about over-fishing of both marine and freshwater resources across the region and many of the coastal and river habitats that sustain the fisheries are being degraded, their water supply diminished, and pollution increased in both coastal and freshwater systems. Unless action is taken to address these problems, the region's capture fisheries risk a sustained decline. If aquaculture is to realize its great promise and the successes of Egypt and Nigeria are to be repeated in other countries and different farming systems, carefully targeted research and investment will need to be sustained over many years.

To help meet these challenges the WorldFish Center has developed a new Strategy for Africa and West Asia. We believe that sustained harvest of the region's capture fisheries together with continued development of aquaculture can provide the region with an enhanced and sustainable supply of fish protein and employment for millions of people. The Center's Strategy focuses upon four aquatic production systems: rivers and floodplains, lakes and reservoirs, coastal fisheries, and aquaculture; and a number of overarching policy studies and capacity-building activities. The Center seeks to generate research results that will help strengthen national and regional policies and capacity to sustain and enhance the development benefits from capture fisheries, while identifying and designing ways to overcome technical, economic and social bottlenecks to the development of aquaculture.

Challenges facing African fisheries and aquaculture

Capture fisheries

Africa's extensive rivers sustain important fisheries (Table 1), ranging from the large floodplains of the inner Niger delta in Mali to the forest rivers of Cameroon,
where surveys have shown fish to be the most important of all non-timber forest products. These river fisheries are severely stressed across much of the region, with inadequate management systems, intense fishing pressures and changes in water quality and flow regimes leading to declining productivity and yields. To address these challenges, a major investment is needed to understand and establish governance systems for river fisheries that foster sustainable levels of use, while also maintaining the water flow required to sustain them. In support of these efforts, the value of river fisheries needs to be better understood and communicated, and ways to assess water requirements should be developed and used to improve the information upon which water and fishery management decisions are based.

The continent’s lake fisheries play an equally important role in many local economies. The annual harvest from most of these is in excess of 20 000 t/year (Table 2) (Lévêque 1999) and the fisheries of the largest lakes are of national and regional importance. Yet many of these lake fisheries face over-fishing compounded by eutrophication caused by urbanization, agriculture, and catchment degradation. Long-term sustainable use of lake fisheries will require better governance and significant improvements in the management of land and water use in the catchment areas.

Artificial reservoirs play a significant role in fisheries production in the region. Published annual harvest data show production ranging from 1 500 t from Lake Nasser (Egypt) and 40 000 t from Lake Volta (Ghana), with yields commonly around 50 kg/ha or above (Table 2) (Lévêque 1999). While some of this variation is due to the natural productivity of these artificial lakes, much of it is because of differences in the management regime, including timing and extent of draw-down and whether or not there has been any stocking. To fully exploit their potential, the management requirements of the individual systems need to be assessed and appropriate regimes agreed upon with key stakeholders.

Many thousands of small dams and small water bodies (SWBs) are also fished. In

Table 1. Fisheries production from some African floodplains

<table>
<thead>
<tr>
<th>Floodplain</th>
<th>Area (km²)</th>
<th>Catch (t)</th>
<th>Number of Fishers</th>
<th>Yield (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Niger (Benin)</td>
<td>242</td>
<td>1 200</td>
<td></td>
<td>49.6</td>
</tr>
<tr>
<td>Niger (inner delta)</td>
<td>20 000</td>
<td>90 000</td>
<td>54 112</td>
<td>45</td>
</tr>
<tr>
<td>Niger (Nigeria)</td>
<td>4 600</td>
<td>14 340</td>
<td>6 600</td>
<td>31.2</td>
</tr>
<tr>
<td>Benoue</td>
<td>3 100</td>
<td>9 570</td>
<td>5 140</td>
<td>30.9</td>
</tr>
<tr>
<td>Pongolo</td>
<td>104</td>
<td>400</td>
<td></td>
<td>38.5</td>
</tr>
<tr>
<td>Shire (1970)</td>
<td>665</td>
<td>9 545</td>
<td></td>
<td>2 445</td>
</tr>
<tr>
<td>Shire (1975)</td>
<td>665</td>
<td>7 890</td>
<td></td>
<td>3 324</td>
</tr>
<tr>
<td>Yaérés (Cameroon)</td>
<td>7 000</td>
<td>17 500</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>Logomatio</td>
<td>600</td>
<td>300</td>
<td>70</td>
<td>5</td>
</tr>
<tr>
<td>Kafue (1970)</td>
<td>4 340</td>
<td>6 747</td>
<td>670</td>
<td>15.6</td>
</tr>
<tr>
<td>Kafue (1982)</td>
<td>4 754</td>
<td>7 400</td>
<td></td>
<td>15.6</td>
</tr>
<tr>
<td>Ouémé (1957)</td>
<td>1 000</td>
<td>10 400</td>
<td>25 000</td>
<td>104</td>
</tr>
<tr>
<td>Ouémé (1968)</td>
<td>1 000</td>
<td>6 500</td>
<td>29 800</td>
<td>65</td>
</tr>
<tr>
<td>Sénégal</td>
<td>5 490</td>
<td>30 000</td>
<td></td>
<td>54.7</td>
</tr>
<tr>
<td>Barotsé</td>
<td>5 120</td>
<td>3 500</td>
<td>912</td>
<td>6.9</td>
</tr>
<tr>
<td>Cross</td>
<td>8 000</td>
<td>8 000</td>
<td>4 000</td>
<td>10</td>
</tr>
<tr>
<td>Nile (South)</td>
<td>31 800</td>
<td>28 000</td>
<td></td>
<td>8.8</td>
</tr>
</tbody>
</table>

Source: Lévêque 1999; Welcomme 1989

Table 2. Fisheries production from some African lakes and reservoirs

<table>
<thead>
<tr>
<th>Reservoirs</th>
<th>Surface (km²)</th>
<th>Catch (t)</th>
<th>Yield (kg/ha)</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kossou</td>
<td>900</td>
<td>4 700 - 9 300</td>
<td>67 - 147</td>
<td>1972-78</td>
</tr>
<tr>
<td>Lagdo</td>
<td>700</td>
<td>7 700 - 13 400</td>
<td>175 - 340</td>
<td>1985-91</td>
</tr>
<tr>
<td>Maga</td>
<td>360</td>
<td>700 - 3 600</td>
<td></td>
<td>1984-92</td>
</tr>
<tr>
<td>Manantali</td>
<td>500</td>
<td>1 500</td>
<td>30</td>
<td>1995</td>
</tr>
<tr>
<td>Sélingué</td>
<td>400</td>
<td>4 000</td>
<td>100</td>
<td>1995</td>
</tr>
<tr>
<td>Jebel Aulia</td>
<td>1 500</td>
<td>7 000 - 8 000</td>
<td>50</td>
<td>1975</td>
</tr>
<tr>
<td>Mtera</td>
<td>600</td>
<td>3 250 - 5 000</td>
<td>80</td>
<td>1986-91</td>
</tr>
<tr>
<td>Mwadingusha</td>
<td>1 000</td>
<td>674 - 8 000</td>
<td>50</td>
<td>1953-83</td>
</tr>
<tr>
<td>Kafue Flats</td>
<td>4 300</td>
<td>2 450 - 10 850</td>
<td>6 - 25</td>
<td>1957-82</td>
</tr>
<tr>
<td>Kainji</td>
<td>1 270</td>
<td>4 500 - 6 000</td>
<td>35 - 47</td>
<td>1974-78</td>
</tr>
<tr>
<td>Kariba</td>
<td>5 300</td>
<td>30 700</td>
<td>30 - 41</td>
<td>1990</td>
</tr>
<tr>
<td>Nasser</td>
<td>6 200</td>
<td>15 600 - 31 200</td>
<td>6 - 25</td>
<td>1981-91</td>
</tr>
<tr>
<td>Volta</td>
<td>7 400</td>
<td>40 000</td>
<td>55</td>
<td>1970-79</td>
</tr>
<tr>
<td>Turkana</td>
<td>7 560</td>
<td>350 - 22 000</td>
<td>9 - 16</td>
<td>1962-88</td>
</tr>
<tr>
<td>Baringo</td>
<td>130</td>
<td>152 - 600</td>
<td>10 - 50</td>
<td>1964-86</td>
</tr>
<tr>
<td>Naivasha</td>
<td>130</td>
<td>44 - 950</td>
<td>5 - 60</td>
<td>1964-86</td>
</tr>
<tr>
<td>Albert/Mobutu</td>
<td>5 270</td>
<td>23 900</td>
<td>47 - 65</td>
<td>1989</td>
</tr>
<tr>
<td>Chilwa</td>
<td>750</td>
<td>13 700</td>
<td>77</td>
<td>1989</td>
</tr>
<tr>
<td>Chiuta</td>
<td>200</td>
<td>1 100</td>
<td>75</td>
<td>1989</td>
</tr>
<tr>
<td>Edward</td>
<td>2 300</td>
<td>14 400</td>
<td>61 - 70</td>
<td>1989</td>
</tr>
<tr>
<td>Kivu</td>
<td>2 370</td>
<td>4 600</td>
<td>27 - 42</td>
<td>1991</td>
</tr>
<tr>
<td>Malawi</td>
<td>30 800</td>
<td>69 400</td>
<td>35 - 45</td>
<td>1991</td>
</tr>
<tr>
<td>Mweru</td>
<td>4 650</td>
<td>20 200</td>
<td>60</td>
<td>1990</td>
</tr>
<tr>
<td>Tanganyika</td>
<td>32 900</td>
<td>133 900</td>
<td>90</td>
<td>1990</td>
</tr>
<tr>
<td>Victoria</td>
<td>68 000</td>
<td>562 900</td>
<td>29 - 59</td>
<td>1991</td>
</tr>
</tbody>
</table>

Source: Lévêque 1999
eastern and southern Africa alone, there are an estimated 50 000 to 100 000 such SW Bs (Haight 1994). Even though most of these have been built for purposes other than fisheries, are usually located in rural areas with difficult access, have low fish yield and revenue and are low in the government’s list of priorities, there is potential for improving their yield. As efforts to improve water productivity at the basin level increase in the coming years, the potential of these water bodies to provide fish and income for rural people is likely to be developed (Dugan et al. 2002). Management of SW Bs also provides an important transition to aquaculture in some areas.

Africa’s extensive marine waters provide the bulk of the region’s fish harvest (FAO 1999), with industrial fleets dominating the catch. However, artisanal harvest is significant throughout the region. For instance, the artisanal catch along the Atlantic coast of Western Africa is in excess of 1 million t (Horemans 1998) and in Mozambique it is 80 000 t valued at US$ 50 million. The economic and social importance of these fisheries is high. For example, in the coastal region from Mauritania to Angola there are estimated to be over 570 000 full-time artisanal fishers and many more farmers who fish part-time. In addition, some 1.8 million people in this area are estimated to be engaged in fish processing and marketing (Horemans 1998).

The importance of these resources is highlighted by the pressures upon them. Moreover, the collapse of other economic sectors combined with population increases and migration to coastal areas have led to an increase in the number of coastal fishers in many parts of the region. In the face of this increased fishing pressure, traditional management systems are rarely adequate to ensure sustainable use of these resources, and the situation is further exacerbated by the impact of the market economy and environmental degradation (Horemans 1998). Urbanization, increased tourism and industrial expansion have all damaged important coastal ecosystems in many parts of the region. Pollution from land-based sources, increased sedimentation and changes in river flows as a result of building dams have contributed to the degradation of many others. These changes can have major impacts upon coastal fisheries and the people dependent upon them. Therefore, they need to be understood better, documented convincingly, and communicated effectively to key stakeholders if action to prevent and/or mitigate them is to be taken.

Aquaculture

Aquaculture will need to be developed progressively if the projected increase in the demand for fish protein in the region is to be met. There is also a growing recognition of the considerable potential of small-scale aquaculture to diversify livelihood options for poor farmers and increase their income while reducing their vulnerability, and also to improve land and water management.

The potential for aquaculture across the region is enormous. For sub-Saharan Africa (SSA) alone, Kapetsky (1994) has estimated that 9.2 million km² (or 31 per cent) of the land area is suitable for smallholder fish farming. If yields from recent smallholder development projects can be replicated elsewhere, only 0.5 per cent of this area would be required to produce 35 per cent of the region’s increased fish requirements up to the year 2010 (Kapetsky 1995).

This potential for aquaculture remains largely untapped over much of the region at the present time. In 1999, total aquaculture production in SSA was only 117 000 t, which is 0.4 per cent of the world production. Yields in most countries remain low, commercial operations have yet to develop in most areas, and fish farmers are relatively few in number (Moehl 2001). The precise reasons for the poor adoption of aquaculture by small-scale farmers have varied from case to case, but the fundamental cause is now widely recognized to be the failure of effectively integrating aquaculture into the farm economy (Harrison et al. 1994; Stomal and Weigel 1999; Brummett and W illiams 2000). This in turn is due to several factors.

- Too much emphasis on the role of central government structures, both in terms of technical support and provision of inputs, and not enough on the farmers.
- Poor understanding of the household economies and rural livelihood strategies into which aquaculture has to be integrated and the constraints and opportunities they present.
- Poor understanding of the roles of people comprising the household and in particular the role of women.
- Poor understanding of social constraints.
- Poor assessment of markets.
- Too much emphasis on bio-technical methods rather than simpler, more readily adopted and more adaptable approaches.
- Inadequate extension services.

As a result, attempts to promote the development of aquaculture on small farms have failed to recognize the real needs of the farmers, assist them in adjusting aquaculture practices to their specific context, and so resolve the constraints of time and resources that limit the adoption of aquaculture.

Over the course of the 1990s, a number of initiatives have tried to remedy past shortcomings, in particular by placing greater emphasis on the development context (Stomal and Weigel 1998). Several of these new initiatives have pursued an integrated and adaptive action-research-development approach, rather than the compartmentalized approach of pursuing research followed separately by extension that characterized the failed efforts of the 1970s and 1980s. For example, in

<table>
<thead>
<tr>
<th>Fish Production System</th>
<th>Countries with initial WorldFish activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rivers and floodplains</td>
<td>Cameroon, Ethiopia, Ghana, Malawi, Nigeria, Zambia</td>
</tr>
<tr>
<td>Lakes and Reservoirs</td>
<td>Egypt, Ethiopia, Malawi, Mozambique</td>
</tr>
<tr>
<td>Coastal Fisheries</td>
<td>Egypt, Mozambique</td>
</tr>
<tr>
<td>Aquaculture</td>
<td>Cameroon, Egypt, Ethiopia, Ghana, Malawi, Mozambique, Nigeria, Zambia</td>
</tr>
</tbody>
</table>
Malawi, this integrated “action-research” approach developed by the WorldFish Center and our partners has resulted in the successful adoption of small-scale pond aquaculture by a growing number of smallholder farmers as an integral part of their farming practice (Brummett and Noble 1995).

Much greater investment will be required over the course of the coming decades to build upon these successes and realize the region’s potential for developing aquaculture. As experience improves the understanding of the opportunities and constraints facing the adoption of aquaculture, new approaches can be developed to address the constraints and failings of the past. In particular the social, economic and institutional constraints to aquaculture need to be understood, and the approaches used adjusted to address them. A thorough understanding of the socio-cultural context and of the market forces that determine the return to the farmer is a prerequisite for designing successful aquaculture. The role of the government, the private sector, and NGOs should be clearly defined and supported. In particular, the training and extension system needs to be adapted to the dynamic environment within which aquaculture is being pursued and adopted.

As for most other crops, prices, demands on the farmer’s time, environmental conditions, and a range of other factors will vary seasonally and annually, from province to province, and in many cases from farm to farm. This means that emphasis needs to be placed upon developing the capacity of the farmer as an entrepreneur by providing a wider suite of understanding and tools from which they can draw in order to adapt to the dynamic environment in which they are operating. The success of this approach has been demonstrated by the WorldFish Center through the use of Research and Extension Teams (RETs) in Malawi and more recently in Cameroon. However, this approach has to be adapted to a much wider range of locations for it to bring about the magnitude of change that is required to meet the growing need for enhanced livelihood and increased fish production from aquaculture in SSA.

In support of these approaches increased investment is required to address technical and environmental constraints. These include the availability of high quality fingerlings at an affordable price, good quality low-cost feeds, control of disease, and efficient use of water resources. The impact of urban development and associated pollution on aquaculture is also of serious concern, as is the impact of aquaculture on natural capture fisheries. The possible loss of biodiversity as a result of escapes from aquaculture is likewise a major issue. To help understand such potential impacts the region’s fish biodiversity needs to be better understood.

The Center’s strategy 2002-2006

These challenges have to be addressed at many levels. Therefore, the Center’s strategy (Box 1) seeks to build upon past work by the Center and its partners; complement other programs already underway, notably those of FAO, national and regional organizations, bilateral development assistance programs, and the NGO community; and identify a limited number of issues that the Center has particular expertise and opportunity to handle. This is an ambitious agenda that will take time to achieve and success will depend upon forging a wide range of partnerships within and outside the region. In the immediate future, priority will be given to the following areas of research and capacity building.

• Analysis of governance arrangements and valuation of capture fisheries in rivers, lakes, and coastal areas.
• Assessment of environmental requirements of river fisheries.
• Assessment of factors affecting production and benefits to poor fishers.
• Assessment of threats to capture fisheries in rivers, lakes, and coastal systems and ways to mitigate these.
• Assessment of means to enhance production from capture fisheries, notably in lakes and reservoirs, including the rehabilitation of depleted stocks.
• Improved understanding of the aquaculture adoption process and development of ways to foster adoption.
• Enhanced aquaculture productivity.
• Development and use of methods to maintain environmental integrity in the face of aquaculture development.
• Assessment of demand and supply of fish and its implications for fisheries development.

In pursuing these priorities, special attention is being given to working with national agriculture and fisheries research and extension institutions (Table 3), advanced research institutes, NGOs, and international institutions. Where ever possible, the Center will help to build capacity at the national level and special attention will be given to develop training programs.

References

The goal and objectives of the WorldFish Center’s Strategy for Africa 2002-2006 are set out below.

Goal
Sustain and enhance the contribution of capture fisheries and aquaculture to rural and urban food security and livelihoods.

Rivers and Floodplains
- **Objective 1.** Identify systems of governance that enhance the contribution of river fisheries to food security and sustainable livelihoods, and distil reasons for their success.
- **Objective 2.** Acquire, interpret and supply information on the value of fisheries in support of systems of governance that enhance the contribution of river fisheries to food security and sustainable livelihoods.
- **Objective 3.** Provide information on ways in which fish and fishers respond to natural and artificial changes in river systems as a basis for improved management and mitigation of losses caused by external interventions such as dams.

Lakes and Reservoirs
- **Objective 1.** Identify systems of governance that enhance the contribution of lake fisheries to food security and sustainable livelihoods.
- **Objective 2.** Determine the status of fisheries of the region’s lakes and reservoirs and improve the availability of existing data on fisheries productivity (past, present and potential) and management.
- **Objective 3.** Evaluate and identify approaches for conserving biodiversity in the region’s natural lake systems.
- **Objective 4.** Evaluate options for maximizing fish production of reservoirs (including pen and cage culture), in the face of competing demands for water.

Coastal Fisheries
- **Objective 1.** Identify systems of governance that can foster sustainable use of coastal fisheries in the face of changing demographic, social, and economic conditions, and can enhance the contribution of these resources to food security and sustainable livelihoods.
- **Objective 2.** Acquire, interpret and supply information on the value of fisheries in support of systems of governance that enhance the contribution of coastal fisheries to food security and sustainable livelihoods.
- **Objective 3.** Provide information on the ways in which pressures upon the coastal zone impact coastal fisheries and identify ways to address these threats.

Aquaculture
- **Objective 1.** Enhance the contribution of, and participation in, aquaculture through a better understanding of the adoption process.
- **Objective 2.** Enhance aquaculture productivity, including efficient seed production and genetic enhancement.
- **Objective 3.** Develop and implement methods to measure, monitor and maintain environmental integrity.

Policy
- **Objective 1.** Establish reliable estimates of future supply and demand for fish within the region and identify the implications for future investments in fisheries and aquaculture research.
- **Objective 2.** Establish reliable estimates of the impact of projected climate change on capture fisheries and aquaculture potential in the region.

Capacity
- **Objective 1.** Enhance the capacity of national institutions to design and carry out research that will strengthen fisheries and aquaculture management in the region.
- **Objective 2.** Enhance the capacity of national and regional institutions to disseminate and use the results of fisheries and aquaculture research.

P. Dugan is from the WorldFish Center’s Regional Research Center for Africa and West Asia, PO Box 1261, Maadi, Cairo, Egypt.
E-mail: worldfish-egypt@cgiar.org
Potential for the development of aquaculture in Africa

D.M. Jamu and O.A. Ayinla

Abstract

Aquaculture production in Africa has remained low despite the huge potential that exists on the continent. In order for this potential to be realized, it is necessary to refocus the direction of aquaculture development. This paper concludes that for further growth to occur it is necessary to: (i) widen the range of production systems; (ii) increase production intensities and efficiencies; (iii) develop management technologies for indigenous species that target local niche markets; (iv) put more emphasis on marketing and processing of high value products; (v) promote policy research on how aquaculture production can respond to changing macroeconomic policies; and (vi) accelerate the disengagement of government from activities that can best be done by the private sector.

Introduction

Aquaculture in Africa has come a long way since it was first introduced. However, in comparison to the rest of the world, aquaculture production in Africa is still insignificant at the global level and accounts for about 0.9 per cent (404 571 t) of the total global aquaculture production in 2000 (FAO 2003). Nonetheless, aquaculture in Africa is going through an exciting phase of evolution and growth after numerous false starts that did not result in any meaningful aquaculture development. This lack of development exists against a backdrop of conditions that would benefit greatly from the rapid development of aquaculture on the continent, namely, high incidence of poverty, malnutrition and unemployment (Hecht 2000). The reasons for the lack of growth have been reviewed elsewhere (Brummett and Williams 2000; Huisman 1990; Harrison 1995) and include overzealous and unplanned promotion of aquaculture that placed emphasis on technical research and technology transfer without regard to the natural resource base and the socio-cultural and economic context within which the technologies were being promoted. It became apparent that technical research and technology transfer had to fit within the local conditions (natural resources, socio-cultural and economic) of the specific area where aquaculture development was being planned.

Since the early 1980s, some international development agencies and advanced research institutes have been promoting aquaculture within the context of integrated agriculture and have begun addressing socio-cultural and economic factors that have been impeding aquaculture development. This approach resulted in sustained aquaculture growth in some African countries, such as Côte d’Ivoire, Egypt, Ghana, Malawi, Nigeria and Zambia. The development of domestic and export markets for fish, changing macro-economic environments and the stagnation of inland capture fisheries in sub-Saharan Africa has made investment in aquaculture attractive. Private investment in commercial aquaculture production and growth of this sector have been reported in Egypt, Kenya, Namibia, Nigeria, Malawi, South Africa, and Zambia. In order for aquaculture to register further growth and meet its potential of bridging the gap between fish supply from capture fisheries and the demand for fish, the direction of aquaculture development in Africa will have to be refocused. This paper explores the potentials of aquaculture in Africa and proposes future directions for the implementation of aquaculture research and development in the continent. The paper concentrates on four issues, namely, production systems, culture species, marketing and policy.

Production systems

A wide variety of production systems, such as cages, ponds, tanks and raceways, are being used for aquaculture in agriculture, freshwater and marine environments in Africa. These systems are being used in small, medium and large-scale operations and at various levels of intensity (Machena and Moehl 2001). Currently, earthen ponds are the dominant production system in Africa. A major proportion of public sector research and development effort has been directed towards increasing the productivity of pond systems. In contrast, very little public sector research and development has been geared towards improving and understanding other production systems such as brushparks, cages, and culture-based enhancement fisheries in floodplains, rivers and lakes. In order to increase the production potential of aquaculture in Africa, research and development should focus on a wider range of production systems for fish farming and on increasing the intensity of production in fishponds to help farmers achieve higher yields.
emphasis should be placed on developing better performing strains through genetic enhancement. Genetic enhancement methods such as those used to produce the GIFT strain Nile tilapia (Eknath et al. 1993) should be widely disseminated in Africa to accelerate national genetic enhancement programs. In addition, development and application of improved broodstock and hatchery management techniques are required to avoid inbreeding, interspecific hybridization, and contamination of improved strains through introgression from feral species and vice versa.

One way of achieving high production intensities is through the use of recirculating aquaculture tank systems (concrete or fiberglass). These systems require aeration and complete feeds to support the high stocking densities. Moreover, they rely on organized urban markets to move the products (directly or through brokers and middlemen). Use of these systems is increasing in the urban and peri-urban areas of West Africa where land availability is a major constraint to investment in aquaculture. For example, in Nigeria intensive recirculating systems are being used to culture African catfish (Clarias gariepinus). Intensive recirculating systems are likely to be important in the production of fish for the peri-urban and urban areas to meet the demand from the growing urban populations.

Fish Nutrition

As aquaculture production becomes more and more intensive, fish feeds will be a significant factor in increasing the productivity and profitability of aquaculture. Feed management determines the viability of aquaculture as it accounts for at least 60 per cent of the cost of fish production. At present, the high cost and low quality of fish feeds are major factors limiting the development of aquaculture in Africa and are likely to remain so in the near future. Therefore, nutrition research that helps to reduce the cost of fish feeds without reducing their efficacy will be crucial to the successful development and commercialization of aquaculture in Africa.

So far, nutrition research has concentrated on the replacement of animal protein by plant proteins with a view to reducing the cost of supplemental feeds (de Silva 2001). Hecht (2000) contends that research on inexpensive feed ingredients has not contributed greatly to aquaculture development in Africa and suggests that more effort should be put into research on how plant proteins can best be used in the feeding of fish. Recognizing that ponds will remain the major aquaculture production system in Africa for the foreseeable future, developing nutrition strategies that maximize the contribution of natural and supplemental feeds in fishponds would help to expand aquaculture production. This requires the development of revolutionary feed and fertilization regimes that increase the nutritive value of fish diets (both supplementary and natural), and increase profitability and productivity without degrading the environment. Recent work on staged pond inputs in Thailand (Brown et al. 2001; Yi and Lin 2000) where feed costs are reduced by delaying the timing of supplemental feeding without reducing fish yields provides a framework for application and adaptation to aquaculture in Africa.

Species for aquaculture

Aquaculture research and development in Africa have concentrated on several tilapia species and on the African catfish. The tilapias have been more widely promoted for fish farming and now dominate aquaculture production. Other indigenous fish species that have a high local demand in the different countries also have a tremendous potential to contribute to higher aquaculture production. For example, clariids such as the African catfish (C. gariepinus) have overtaken tilapia as major culture species in Nigeria (FAO 1999), and common carp (Cyprinus carpio) production in Egypt is in decline in preference to the indigenous Nile tilapia (Oreochromis niloticus) (Brummett 2000). This trend of market demand dictating the choice of indigenous fish species for culture is likely to continue in the future and will direct aquaculture expansion towards the production of fish for niche markets. Therefore, efforts should be made to develop production and management technologies for indigenous species that have a high local demand. The development of production techniques for local species and their successful culture may also help to protect natural fish populations, which are threatened in many cases due to unsustainable fishing practices.

Culture of marine species is underdeveloped in Africa. Except for the culture of a
few species such as oysters, seaweed, and sea bass in Egypt, Namibia, South Africa, and Tanzania, very little effort has been spent on promoting this sector. Focused attention on the development of this sector has a potential to generate employment and take advantage of the opportunities that exist for export-oriented production.

Floodplain aquaculture and culture-based fisheries

Although earthen ponds will continue to be the dominant aquaculture production system in Africa, the potential of other production systems such as culture-based fisheries in floodplains, lagoons, and small water bodies needs to be fully explored. Simple management interventions in floodplains can increase fish yields. For example, fish yields ranging from 300 to 1,700 kg ha⁻¹ have been reported from floodplain fish culture systems in Bangladesh, Malawi, and Vietnam (Dey and Prein 2002; Chikafumbwa et al. 1998). Culture-based fisheries in the form of brushparks also have a long tradition in West Africa and recent studies conducted in Malawi (Jamu et al. 2003) suggest that brushparks could be a viable technology for fish production in other parts of Africa. The high production potential of floodplain aquaculture and culture-based fisheries, their accessibility to the rural poor and landless people, and the fact that little initial capital investment is required to implement aquaculture in floodplains compared to proprietary land-based aquaculture (Lorenzen et al. 2001), provide a good option for supplying high quality protein and additional income to the rural poor. To realize this potential, the traditional aquaculture technologies that are practiced in African floodplains need to be aggressively reviewed and refined to allow for better control of production and management. Development of aquaculture in floodplains should concentrate on introducing simple management interventions, e.g., stocking, and supplemental feeding of fish in enclosures, temporary pools, channels, etc., as well as on testing different co-management arrangements that maximize the social and economic benefits to the communities using these resources.

Cage culture

Existing cage culture operations in Africa indicate that cage culture is viable and has tremendous potential to produce high quality fish products for domestic and export markets (Windmar et al. 2000). However, the dependence of these production systems on formulated feeds, intensive land-based hatcheries, and initial high capital outlay all suggest that commercial cage culture operations can only be undertaken by industrial investors. Since most of the information and technology on the operation of cage culture systems are in industrialized countries, the potential of this sector to contribute to fish production will depend on the formation of partnerships between developing country operators and developed country investors. Research on small-scale cage culture operations in irrigation canals, rivers, and lakes is still in its infancy in Africa, but these systems have the potential to contribute to rural incomes and fish production (Mikolasek et al. 1997). For example, experience in Asia indicates that small cages can provide rapid returns to the rural poor who do not have access to land for pond aquaculture (Hambrey et al. 2001). To develop small-scale cage culture operations, the focus should be on consolidating research on small-scale cage operations in rivers and small water bodies, establishing management and institutional guidelines for the use of cages in water bodies, and generating information on the costs and profitability of small-scale cage culture.

Marketing

Markets and marketing are essential for the development of aquaculture (Huisman 1990). Small-scale aquaculture development efforts in the past have emphasized the importance of aquaculture for food security without focusing on the commercial dimensions of fish farming (Hecht 2000). However, the FAO Strategic Assessment of Aquaculture and a review of the literature suggest that there is a high market demand for fish that will support commercial fish farming in Africa (Agullar-Manjarrez and Nanth 1998). In order for small-scale aquaculture to take off in Africa, future research and development should emphasize both the development of aquaculture for income generation and the production of more affordable fish for the rural and urban poor. The demographic shifts that will result in 61 per cent of the African population residing in urban areas by 2025 (de Nigris 2000) suggest that there is also a need to focus on urban markets. While small-scale aquaculture will still continue to produce for the rural markets,
these demographic shifts indicate that there will be a market for small-scale and large-scale commercial farmers to produce high quality fish and processed fish products for the urban markets. Research is required to study market demand and supply, with projections for the future, and how farmers should target consumer groups for the future success of the industry in Africa.

Small-scale farmers have fragmented production units that require collective production and marketing to ensure that fish are delivered to markets at a cheaper price. This requires the formation of producer groups or associations. Although there is very little information on group formation by commercially-oriented small-scale aquaculture producers, experience of other market-oriented agricultural products such as cocoa, coffee, horticulture products, milk, and tobacco suggest that producer associations are beneficial for the collective procurement of inputs and marketing of products. Producer groups and associations would benefit small-scale aquaculture through high volume purchases of inputs, including feed, fertilizers, and fingerlings, and ensuring lower marketing costs. Currently, extension services to individual farmers are focused on improving production, while neglecting marketing, processing (cold chains, live marketing, smoking and valued added products), socio-economic factors, and the adoption of aquaculture. However, future development will depend on how African fish farmers are prepared to meet the challenges of market orientation and, hence, the identification of effective aquaculture adoption and dissemination strategies.

Policy

Aquaculture development in many African countries is hampered by the lack of sector-specific development policies and plans. The policy environment under which aquaculture development has been promoted has actually received very little attention compared to the development of production technologies. To ensure an increased contribution by aquaculture to food security and incomes, issues such as credit availability (to farmers, producers and local marketing chains), facilitation and promotion of aquaculture enterprises, aquaculture technology adoption and dissemination processes, the protection of the environment, and biosafety need to be addressed.

African governments are promoting democracy, trade liberalization, and decentralization. These changes are affecting the way that aquaculture development is facilitated. For example, the Nigerian government is disengaging itself from direct production of fish by promoting the development of aquaculture through the participation of all stakeholders, with the government guaranteeing loans to groups of fish farmers. Uganda is privatizing agricultural extension services and giving farmers the choice of extension advice by providing them with government money to buy the advisory services they want (NARO/MAAIF 2002). Research on the impact of national policies on aquaculture development needs to be undertaken in order for aquaculture development plans to respond better to macro-economic policies.

One of the major policy issues that should be addressed in Africa is the role of government and government stations in the promotion and development of aquaculture. Until recently, the model for aquaculture development in Africa involved the construction of government stations to produce fingerlings and table fish for sale to farmers and the general public. This model has proved to be unsustainable (Moehl 1999) and has resulted in the privatization of fingerling production in Madagascar (van den Berg 1996). The stations now have a new role as sites for participatory technology development and maintenance of improved strains of fish, as is the case for Malawi and Nigeria. The experience of Malawi on the efficacy of participatory aquaculture research and extension is currently being documented. However, the lack of documentation of successful privatization and redefined roles of government stations makes it difficult to use them to influence policy change in the African continent. Documenting the processes and impacts of successful aquaculture policies will provide information that can be used in the formulation of similar policies in other African countries. Accelerating the disengagement of governments from functions that can be done efficiently and profitably by private farmers will allow governments to concentrate on delivering quality services that cannot be undertaken by the private sector, e.g., the genetic improvement of fish and maintenance of improved fish strains.

Conclusion

Aquaculture is now a known food production enterprise in Africa and has become established in a number of countries. However, in order to realize the full potential of aquaculture in Africa there is an urgent need to develop and promote aquaculture technologies that increase intensification of production; make it accessible to the poor and the majority of the African population through the use of culture in resource systems such as floodplains, rivers, and small water bodies; and develop production and marketing strategies that allow farmers to respond better to changing consumer demands. The public sector should devote more resources to policy research on the facilitation and promotion of aquaculture, as well as the response of aquaculture enterprises to changing macro-economic policies.

References

Aqüicultura-Magazine, Rio de Janeiro, Brazil.

NAGA, WorldFish Center Quarterly Vol. 26 No. 3 Jul-Sep 2003 13

D.M. Jamu is from the WorldFish Center, Zomba, Malawi, and O.A. Ayinla is from the Nigerian Institute of Oceanography and Marine Research, Lagos, Nigeria. E-mail: worldfish-malawi@cgiar.org
Local solutions to challenges of West Indian Ocean fisheries development

R. van der Elst

Abstract

The West Indian Ocean is rich in biodiversity and marine resources. This paper gives an overview of fisheries development and resource management in the region. There are many shared issues that must be addressed within countries and at the regional level. These are illustrated by examples from three countries. In Mozambique the issues of lack of information about artisanal fisheries, excessive harvesting of juveniles and conflicts between artisanal and commercial sectors are highlighted. Elements in addressing this include targeted research and decision-making support tools. The challenges faced in Somalia stem primarily from the political instability that contributed to an absence of sound fisheries policy. An example of a highly participatory process to develop the policy provides a model for other countries. In Tanzania, the issue of dynamite fishing was addressed by local communities initiating a program to promote wise use of the resources. There is a clear opportunity for better collaboration and greater integration of fisheries research and management on a regional basis. There is also much to be learnt by the sharing of experiences between countries. This has been initiated by some recently launched regional cooperation projects, but there are still many challenges facing this region.

Introduction

The West Indian Ocean (WIO) is geologically fascinating. Created through the break-up of Gondwanaland millions of years ago, it is a sea with deep canyons, mid-ocean ridges, large fluvial banks, granitic islands, and coral atolls. There are regions of strong seasonal upwellings, narrow continental shelves, and some of the largest boundary currents on the planet. Its role in the early distribution of seafaring peoples, and subsequent trade and shipping routes, dates back many centuries. Equally fascinating is the rich biodiversity of this ocean, with its high levels of endemism and unique species – such as the nearly extinct coelacanth (Latimeria chalumnae). But its importance is not confined to its natural features alone. This body of water provides sustenance and job opportunities to an ever-increasing human population. The Indian Ocean is the only sea surrounded by developing countries with close to half the world’s population. The challenges faced in meeting expectations and demands are enormous – especially so in times of drought and unsettled socio-economic development.

The Food and Agriculture Organization of the United Nations (FAO) has divided the world’s marine environment into 19 major fishing areas. One of the largest of these is the WIO, an area of 30 million km² and accounting for some 8 per cent of the total marine waters. While global trends in fish landings for most of the 19 areas are negative, the WIO has maintained a steady rate of increase in its total landings (FAO 2000). This has largely been the result of the increased harvest of tuna and mackerel-like species, with recent additions of toothfish and orange roughy. While the total catch is relatively modest at about 4 million t, being only 4.6 per cent of the world’s total marine fish landings (FAO 2000), it is seen by distant fleets as an opportunity to offset their decreased landings from other regions.

Fisheries development and management issues

Unfortunately, the WIO has not enjoyed the same level of research interest and coordinated resource management as many other regions. There was a spate of academic interest many years ago, mostly from countries outside the region (Table 1).

Many of these initiatives were of an exploratory nature and, while they did generate interesting scientific data, they did little to assist the sustainable development of resources for the surrounding countries.

More recently, local institutions have implemented research programs of their own, many with a focus on sustainable fishery development. The results from some of these programs are available and several vexing issues have been resolved.
the artisanal fishers and the socio-understanding of the relationship between prompted the need for a closer and culture of the Mozambique nation. This centers, were woven into the fabric of life artisanal fishers, located in 787 fishing sector. It found that at least 80,000 magnitude of the informal and artisanal Escala (IDPPE) in 1996 documented the development unit at the Instituto para o industrial fisheries received attention and a source of income. Historically, only the Mozambicans also rely on fishing as a food in one way or another. Many fish, while some 400 species are harvested protein food intake is stated to comprise More than 50 per cent of that nation’s 40 per cent) to the GDP of Mozambique. Indeed, for many years these resources have been the primary contributors (about 40 per cent) to the GDP of Mozambique. More than 50 per cent of that nation’s protein food intake is stated to comprise fish, while some 400 species are harvested for food in one way or another. Many Mozambicans also rely on fishing as a source of income. Historically, only the industrial fisheries received attention and a full recognition of the role and importance of the artisanal sector is comparatively recent. A census conducted by the Mozambican small-scale fisheries development unit at the Instituto para o Desenvolvimento da Pesca de Pequena Escala (IDPPE) in 1996 documented the magnitude of the informal and artisanal sector. It found that at least 80,000 artisanal fishers, located in 787 fishing centers, were woven into the fabric of life and culture of the Mozambique nation. This prompted the need for a closer understanding of the relationship between the artisanal fishers and the socio-economic development of coastal regions in several parts of Mozambique. With support from the International Fund for Agricultural Development (IFAD), the Norwegian Agency for Development Cooperation (NORAD) and FAO, an ambitious program was launched by the Instituto Nacional de Investigacao Pesquera (IIP), with the aim of establishing clear development linkages between artisanal fisheries and regional development. The districts of Ancoche and Moma were selected as pilot study areas, as the intensity of the artisanal fishery there is exceptionally high, with an estimated 7,602 seine nets operational.

A comprehensive stratified sampling program was designed and, with the engagement of a dozen or more trained monitors, the artisanal fishery was surveyed on a daily basis for a period of four years. Backed by an in-house developed database, the results of some 50 per cent of all fisher outings produced some startling facts.

The estimated total catch made by the artisanal fishers in these two districts alone exceeded 30,000 t in some years, almost equal to the total catch reported by Mozambique to FAO. By far the largest proportion of the catch comprised small pelagic species, mostly anchovies and sardines. The availability of these short-lived species varied enormously from year to year, which has implications for the economies of the coastal communities.

Of particular note was the high incidence of juvenile and especially larval fish and shrimp in the catch. Of the biomass, these accounted for 11 per cent of the catch by weight. The high larval by-catch was attributed to the mosquito net liners that had been inserted into the nets. An entire “cottage industry” had developed where women would deep-fry the larvae as a quick snack along the roadside.

Not only did the larval catch potentially compromise future recruitment to the artisanal fishery, the larval shrimp catch was also seen as a threat to optimizing the valuable offshore industrial shrimp catches and, hence, creating a serious conflict of interest between the users. On the other hand, the industrial trawlers ventured extremely close to shore, thereby impacting the artisanal beach seine fishery. Clearly, this situation offered opportunities for compromise. Using the information generated by the project, a management agreement was implemented whereby mosquito net liners were removed in exchange for trawlers remaining further offshore. The monitoring program soon recorded lower harvests of larval fish, down to 4 per cent of the total landings in the first season.

Despite the fact that the artisanal catch of shrimp was only 1.5 per cent of the industrial catch, with a further 0.2 per cent as juveniles, the industrial versus artisanal conflict remained. The IIP program provided decision-making support. Using a bio-economic model based on yield per recruit, and taking the market value of shrimps each month of their first year of life (by size), valuable information was derived concerning the size limits of the prawns. Although several assumptions had to be made, the model indicated that by closing the fishery completely for the first month of juvenile growth (either by banning fishing or changing selectivity) the potential total yield in terms of market value to the artisanal fishers increased by 18 per cent. The profitability increased for the first four months of juvenile life being closed to fishing, when it reached a potential 55 per cent increase in value in the fifth month of fishing. Thereafter, the profitability decreased substantially (Fig. 1).

Thus, while the artisanal fishers could potentially benefit from a 55 per cent increase in the value of their catch, the industrial fleet would also stand to benefit, although only marginally. While it was shown that a four-month closed season would increase the survival of the larval shrimps six-fold, the actual contribution to the industrial catch would be no more than one metric tonne – about 0.1 per cent of their total annual catch. Part of the reason for this lies in the fact that the natural mortality for shrimps is exceedingly high and that the artisanal catch of juveniles is relatively small.

Table 1: List of past initiatives on resource management in the West Indian Ocean

<table>
<thead>
<tr>
<th>Expedition</th>
<th>Activities and Outputs</th>
<th>Country</th>
<th>Year</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>International Indian Ocean expedition</td>
<td>Mapping of physico-chemical parameters</td>
<td>Numerous (36 ships)</td>
<td>1966-70</td>
<td>Wyrkki 1971</td>
</tr>
<tr>
<td>The Tyro expedition</td>
<td>Bio-physical research</td>
<td>Netherlands</td>
<td>1993</td>
<td>Wiese et al. 1994</td>
</tr>
<tr>
<td>Several Fridtjof Nansen surveys</td>
<td>Stock estimates</td>
<td>Norway</td>
<td>1960s - 95</td>
<td>na</td>
</tr>
<tr>
<td>South West Indian Ocean Programme (SWIOP)</td>
<td>Fishery resources assessment</td>
<td>WIO countries, Norway and FAO</td>
<td>1986 - 87</td>
<td>na</td>
</tr>
<tr>
<td>Indian Ocean Commission (IOC)</td>
<td>Regional collaboration</td>
<td>WIO island states</td>
<td>1982-present</td>
<td>na</td>
</tr>
</tbody>
</table>

A few examples from different countries are detailed below.

Mozambique

Mozambique has one of the longest coastlines in Africa, a total of about 2,750 km. The coastal areas have rich offshore banks, muddy estuarine bays, fringing reefs and islands, all of which contribute to potentially rich and diverse fisheries. Indeed, for many years these resources have been the primary contributors (about 40 per cent) to the GDP of Mozambique.

The estimated total catch made by the artisanal fishers in these two districts alone exceeded 30,000 t in some years, almost equal to the total catch reported by Mozambique to FAO. By far the largest proportion of the catch comprised small pelagic species, mostly anchovies and sardines. The availability of these short-lived species varied enormously from year to year, which has implications for the economies of the coastal communities.

Of particular note was the high incidence of juvenile and especially larval fish and shrimp in the catch. Of the biomass, these accounted for 11 per cent of the catch by weight. The high larval by-catch was attributed to the mosquito net liners that had been inserted into the nets. An entire “cottage industry” had developed where women would deep-fry the larvae as a quick snack along the roadside.

Not only did the larval catch potentially compromise future recruitment to the artisanal fishery, the larval shrimp catch was also seen as a threat to optimizing the valuable offshore industrial shrimp catches and, hence, creating a serious conflict of interest between the users. On the other hand, the industrial trawlers ventured extremely close to shore, thereby impacting the artisanal beach seine fishery. Clearly, this situation offered opportunities for compromise. Using the information generated by the project, a management agreement was implemented whereby mosquito net liners were removed in exchange for trawlers remaining further offshore. The monitoring program soon recorded lower harvests of larval fish, down to 4 per cent of the total landings in the first season.

Despite the fact that the artisanal catch of shrimp was only 1.5 per cent of the industrial catch, with a further 0.2 per cent as juveniles, the industrial versus artisanal conflict remained. The IIP program provided decision-making support. Using a bio-economic model based on yield per recruit, and taking the market value of shrimps each month of their first year of life (by size), valuable information was derived concerning the size limits of the prawns. Although several assumptions had to be made, the model indicated that by closing the fishery completely for the first month of juvenile growth (either by banning fishing or changing selectivity) the potential total yield in terms of market value to the artisanal fishers increased by 18 per cent. The profitability increased for the first four months of juvenile life being closed to fishing, when it reached a potential 55 per cent increase in value in the fifth month of fishing. Thereafter, the profitability decreased substantially (Fig. 1).

Thus, while the artisanal fishers could potentially benefit from a 55 per cent increase in the value of their catch, the industrial fleet would also stand to benefit, although only marginally. While it was shown that a four-month closed season would increase the survival of the larval shrimps six-fold, the actual contribution to the industrial catch would be no more than one metric tonne – about 0.1 per cent of their total annual catch. Part of the reason for this lies in the fact that the natural mortality for shrimps is exceedingly high and that the artisanal catch of juveniles is relatively small.
Somalia

Somalia presented a different challenge. With the longest coastline in Africa and its rich upwelling system off the Horn, theoretically Somalia has great potential for fishery development. Yet political instability has impeded the wise use of marine resources and little benefit has been generated for its citizens. The absence of a sound overall fisheries policy was seen as a key shortcoming and in response the World Conservation Union (IUCN) and the Oceanographic Research Institute in Durban (ORI), with donor support from the European Union (EU) and the Italian Aid Agency (COOPI), stimulated policy development in two of the more stable regions of Somalia, namely, Somaliland and Puntland. In a process that was executed by local NGOs, a comprehensive marine resource-use policy was formulated. Trained volunteers traveled thousands of kilometers under extremely difficult conditions to reach coastal communities in order to canvass their opinion on fisheries matters. In the end, a near-consensus draft policy was formulated and subsequently presented to the respective regional parliaments. An added bonus was the consensus reached between otherwise antagonistic factions that clearly shared similar problems and interests vis-à-vis fisheries.

Some of the key elements included in the policy are:

- Who owns the resources?
- How are fishing rights allocated and who has access to the resources?
- Approaches to resource management.
- Institutional structures for management of fisheries and resources.
- Funding and finance.
- Research, monitoring, awareness and training.
- Environmental protection.
- Coastal zone management.
- Surveillance and compliance.
- Fishery facilities.

One interesting element of the Somali policy initiative was that it could benefit from the South African experience of developing a new fisheries policy. Both countries were emerging from a troubled past and were thus presented with a unique opportunity to develop new policies.

Tanzania

The five million people living along the 800 km coastline of Tanzania are heavily dependent on marine resources. Most fish are taken in freshwater lakes in Tanzania. The marine catch comprises 15 per cent of the total catch and is generally poorly managed and in some cases under threat. One cause has been the extensive use of dynamite in coastal waters, which has not only damaged fish stocks but has also destroyed large tracts of coral reefs. In response, local communities initiated the Tanga artisanal fisheries program that not only sought to monitor catches, but promoted the wise use of resources. Some fishing zones were declared voluntary sanctuaries. The use of dynamite was seen as a negative factor, not only for the environment but also for the community. The scourge of dynamite fishing has now been significantly reduced and co-management of fishery resources is generating perceptibly increased returns. Several other fishery-related initiatives in Tanzania have been successful. For example, the development of marine parks and, especially, the implementation of the Mafia Island Marine Park Management Plan, has led the way in participatory management and multiple-use of resources.

Challenges and opportunities for fisheries management

The WIO is exceptionally rich in biodiversity and marine resources. The region supports a great many fisheries, ranging from subsistence gathering to the most sophisticated industrial fleets. Most countries in the region depend on these resources, either as primary contributors to their GDP or as vital elements of socio-economic stability in their coastal regions. In addition, fisheries in all these countries share similar problems and challenges. Examples include conflict between artisanal and industrial fishers, how to deal with the by-catch, management of straddling stocks, setting of regional harvesting targets for migratory species, etc. However, a number of competent marine research institutions are located in the region, many of which have excellent scientific know-how.

Yet, these countries have so far failed to implement a regional plan for fisheries. The potential benefits of a collective approach to living marine resources development in...
This situation offers opportunities for better collaboration and greater integration of fisheries research and management among countries in the region. Therefore, a number of regional cooperation projects have been launched recently (Table 2).

The Jakarta Mandate project, a marine component of the Convention on Biological Diversity (CBD), is now generating valuable insights. This work, managed by the IUCN office in Nairobi, has brought together a number of national institutions to document the great diversity of fishery types in the region. Based on existing knowledge, at least 100 different types of fisheries from Kenya, Mozambique, Tanzania, Seychelles and South Africa have been described. Preliminary assessment of these fisheries has revealed some disturbing findings.

- Very few small-scale fisheries in the study region are subject to any significant form of management.
- Most of the fisheries are open access, with little or no control over effort.
- The level of compliance is very low in most cases.
- Very few of the fisheries are subject to specific management plans or have published harvesting target levels.
- In many cases there is good scientific information available that could be applied to the management of a particular fishery.
- In less than 10 per cent of all the documented fisheries is there a reasonable linkage (or application) between scientific information and a structured management plan.
- There are a great many existing or potential conflicts between different fishery types and other forms of coastal and marine development.
- The level of wasted bycatch is quite low, as are its impacts on vulnerable species. However, impact on juveniles of target and other species is generally seen to be high.

Clearly, many problems remain to be solved. However, fascination with the wonders of the WIO may well hold a key to its future wise development. Interest in the study of this rich marine environment should be promoted. In particular, there should be a concerted effort to create, and be seen to create, career opportunities for the region’s own citizens in this field. Part of a future vision should be that young people consider a career in marine and fisheries science as a rewarding challenge in life. This will contribute to finding local solutions to the challenges facing the WIO fisheries.

References

Table 2. List of fisheries research and management projects/activities in the West Indian Ocean

<table>
<thead>
<tr>
<th>Name of project</th>
<th>Purpose/Activity</th>
<th>Funding support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regional Fisheries Information System</td>
<td>Standardized and verifiable fisheries data collection</td>
<td>DFID*4</td>
</tr>
<tr>
<td>Monitoring, control and surveillance</td>
<td>Improving compliance</td>
<td>EU</td>
</tr>
<tr>
<td>Harmonizing fisheries policy</td>
<td>Towards compatibility in management of resources</td>
<td>FAO</td>
</tr>
<tr>
<td>Indian Ocean Tuna Commission</td>
<td>Sustainable management of tuna and related species in the IO</td>
<td>FAO</td>
</tr>
<tr>
<td>South West Indian Ocean Fisheries Commission</td>
<td>Sustainable management of non-tuna species in the WIO</td>
<td>FAO</td>
</tr>
<tr>
<td>East African Marine Eco-region (EAME)</td>
<td>Threats and root causes of biodiversity loss</td>
<td>WWF*2</td>
</tr>
<tr>
<td>Global International Waters Assessment (GIWA)</td>
<td>Assessment of status of defined regions, including fisheries of Agulhas large marine ecosystem (LME).</td>
<td>GEF-UNEP/NOAA/Sida/Finland*4</td>
</tr>
<tr>
<td>Somali and Agulhas large marine ecosystems (LME)</td>
<td>Understanding the two largest LMEs in the WIO</td>
<td>GEF - UNDP*4</td>
</tr>
<tr>
<td>South West Indian Ocean Fisheries Project (SWIOFP)</td>
<td>Assessment and management of the offshore fisheries resources</td>
<td>GEF-World Bank</td>
</tr>
<tr>
<td>Jakarta Mandate: small-scale fisheries of the WIO</td>
<td>Identification, understanding and improved management of the small-scale fisheries of the region in the context of biodiversity protection</td>
<td>IUCN, NORAD</td>
</tr>
</tbody>
</table>

*1 Department for International Development
*2 World Wildlife Fund
*4 Global Environment Facility - United Nations Development Programme

The region have thus not been realized. Nor have the experiences in one country necessarily been beneficially shared with others. In addition, many coastal fisheries are poorly understood and often not well managed, while offshore stocks are mostly taken by nations from other parts of the world, hence, generating little real benefit to countries of the WIO region.
Valuing Africa's inland fisheries: overview of current methodologies with an emphasis on livelihood analysis

C. Béné and A.E. Neiland

Abstract

While Africa's inland fisheries are widely recognized to be of great importance to local people, accurate and up-to-date information on their value is sparse and its absence is a serious constraint to the formulation of effective fisheries policies and management practices. As a contribution to current efforts to address this constraint, this paper reviews the different methods that are potentially applicable to the valuation of inland fisheries and discusses their respective rationales and limitations within a multi-sectoral, multi-user context. The livelihood analysis approach is given special emphasis. The complementarity of this recently developed approach with the other, more conventional, environmental economics methods is illustrated.

Introduction

It is widely perceived that Africa's inland fisheries play an important role in many rural economies. However, as efforts have increased to build upon this awareness and improve the management of these resources, it has become very clear that in most parts of the continent (as in Latin America and Asia) accurate and up-to-date assessments of the economic value of small-scale fisheries are lacking (LARS2 2003; Neiland 2003). Similarly, recent assessments of the potential role of small-scale fishing activities in economic development (both at the local and national levels) also systematically highlight how poorly the true socio-economic value of this sector is reflected in official statistics and discussions on food security and livelihoods (European Commission 2000; Kaczynski and Looney 2000; Anon. 2001).

Faced with this lack of information, national policy-makers and planners, as well as international development agencies, are severely constrained in their ability to propose appropriate rural development policies.

Methods do exist, however, that can help evaluate more precisely the economic and social value of inland fisheries and aquatic resources. The purpose of this article is to review the different valuation methods and to discuss their respective rationales and limitations. The Livelihood Analysis (LA) method will be given particular attention in this review because of its promising usefulness in the specific multi-use/multi-user context characterizing inland aquatic resources. In particular, the article will underline the rational for using LA and also highlight how it complements more classic, economic and socio-economic valuation methods.

Valuation of fishing activities

Economic valuation in fisheries can be approached in a number of different but complementary ways. Three broad approaches to estimating economic value have been developed and are now widely used: (i) conventional economic valuation; (ii) economic impact analysis; and (iii) socio-economic analysis.

Conventional economic valuation

Economic efficiency analysis. The arithmetic of conventional economic valuation is underpinned by economic efficiency analysis (EEA) that has as its goal the maximization of social welfare (defined in terms of the optimal allocation of resources). There are two ways in which EEA is commonly applied: cost-effectiveness analysis and cost-benefit analysis. With cost-effectiveness analysis there is a presumption that the least-cost option will achieve a given objective; whereas with cost-benefit analysis the presumption is in favor of the option that produces the highest ratio of monetary benefits to costs. In short, there is an implicit value judgment underlying EEA, i.e., that improvements in economic efficiency are desirable. In a policy-planning context, this assumption of efficiency is the basis of a number of decision criteria that can be used to select and prioritize project options (or other interventions) in terms of their economic value to society.

Total economic value. It is now recognized that a natural resource may provide a range of benefits according to the particular use or function it fulfills, and this forms the basis of the concept of total economic value (TEV). The components of TEV in respect of an aquatic resource, such as a river system and its adjacent floodplains, are shown in Fig.1.

The obvious and tangible benefits would be those derived from direct use of the resource, and these may materialize in the form of commodities (e.g., fish, aquatic plants, fuel-wood) or services (e.g., recreation and amenity). The aquatic resource may have an additional indirect use, such as coastal protection and providing a habitat for juvenile fish. Individuals may derive a benefit from being able to postpone their personal use of the resource to a later date; they attach an optional value to using the resource. Finally, there is
also another set of benefits that are quite distinct, termed non-use (or “passive” use value). This might include the value associated with the desire to maintain a river fishery intact for future generations (bequest value) or simply the satisfaction of knowing that a particular aquatic habitat has been preserved in perpetuity (existence value).

Economic impact analysis

In contrast to the EEA described above, economic impact analysis (EcIA) does not set out to determine whether a particular policy intervention or project is either beneficial or detrimental in terms of its economic value to society. While EcIA will consider the level of benefits generated by an intervention, it does not consider costs of implementation (i.e., there is no benefit-cost framework). Instead, EcIA aims to establish what effects a particular policy intervention or project has on specific variables. This might involve using revenue analysis to see whether a new fisheries management system is likely to raise fishers’ gross earnings or revenue. More ambitiously, EcIA might also involve the application of multiplier analysis to measure the total economic activity generated by a new fisheries management system (e.g., output, income or employment) as a consequence of the interdependence between fishing and other sectors comprising the regional economy. The total economic impact will be made up of direct and secondary (i.e., indirect and induced) effects.

Socio-economic analysis

Conventional economic valuation is concerned with the analysis of whether particular interventions or projects improve the net wealth of a society. In some cases this outcome might also involve the creation of “winners” and “losers”. For example, the building of a dam across a river for hydro-electric power involves a wide diversity of effects, including major changes in environmental quality and aquatic resource use. Conventional cost-benefit analysis sidesteps the issue by invoking the principle of “potential compensation” (i.e., the intervention represents a net gain to society if the winners could compensate the losers and still be better off). However, since this principle does not insist that compensation actually be paid, it is often of limited relevance when the losers are amongst the poorest of the poor.

In such situations (especially where there is poor governance within the weak state context), something more than economic valuation is warranted, specifically a distributional analysis to examine how the net costs and benefits are apportioned across different groups affected by the change. Socio-economic analyses can often provide an important starting point in identifying and characterizing the socio-economic strata in a community or region. Once the social strata are known, further in-depth economic studies (e.g., income-expenditure surveys) can provide a better understanding of benefit flows (or the lack of them) in relation to specific policy interventions.

Livelihood analysis

In recent years, socio-economic analysis has been further extended with the development of techniques for livelihood analysis (LA) (Carney et al. 1999). When underpinned by conceptual frameworks such as the sustainable livelihoods approach (SLA) (Scoones 1998), these techniques can help to provide a better understanding of the relationship between human society and natural resources.

Rational for adopting livelihood analysis

Intrinsically, economic valuation techniques do not permit identification of the factors that influence or affect people’s access to resources. However, very often the key issue is not the availability of the resource (or symmetrically its scarcity, to which its economic or even social value is related), but the access to this resource. Extending Sen’s (1981) main conclusion, which was initially framed in the specific context of famine, to the wider domain of natural resources, an increasing number of empirical studies have clearly demonstrated that poor people in rural areas are usually those who lack access to natural resources, e.g., forests, fishing grounds, grasslands, etc. (Kremer 1994; Devereux 1996; Leach et al. 1999). In the specific context of fisheries, Béné (2003) shows how socio-institutional mechanisms governing people’s access to fisheries resources, rather than the resources themselves, play a critical role in vulnerability to poverty.

The main lesson pointed out by these different empirical studies is that determining the economic value of a natural resource becomes irrelevant if people whose livelihoods depend on these natural resources cannot access them. Therefore, a key question is: what are the factors (including policies) that influence people’s access to, and control over, natural resources?

The conceptual framework provided by LA appears to be particularly useful to address this question. Indeed, the real
and documented (DFID 1998). Usually strengths and weaknesses are well known respective methodological and analytical ral and agro-forestry systems) and their applied in other domains (e.g., agro-pasto- many years they have been tested and economic valuations already exist. For required for these trans-sectoral socio- activity should be adopted. (Scoones 1998).

Livelihood analysis in practice

The multi-use nature of the water upon which households rely for their inland fishing activities, and the multi-user context within which those activities take place, introduce a number of important methodological constraints. In particular, the intricacy of activities characterizing the livelihood strategies of the majority of fishing households implies that mono-sectoral approaches focusing on separate activities (e.g., fisheries or agriculture) are not appropriate. To correctly implement these valuation exercises, integrated (holistic) assessment analyses in which the different sectors of the local economy are viewed together as a joint production activity should be adopted.

The survey techniques and methods required for these trans-sectoral socio-economic valuations already exist. For many years they have been tested and applied in other domains (e.g., agro-pastoral and agro-forestry systems) and their respective methodological and analytical strengths and weaknesses are well known and documented (DFID 1998). Usually a combination of participatory and non-participatory (passive) techniques is required. There is no unique “recipe” or best methodological combination. The only central condition is that the techniques must be trans-sectoral and holistic. They are, therefore, usually designed and implemented by multi-disciplinary teams. Table 1 presents some of them.

Conclusion

Adequate policies and processes for the effective management of natural resources require information about the exact economic value of these resources, and also about the ways in which people use these natural resources to sustain their livelihoods. It could be argued that to make an appropriate decision regarding the management of a natural resource, not only must information about its economic value be known but also the contribution that this resource makes to people’s livelihoods: who uses the resources, when, and how?

A variety of techniques exist to answer these questions. It has been shown that the different approaches offer a set of complementary techniques that constitute a comprehensive analytical framework (Fig. 2). This analytical framework, when properly applied, can help to improve understanding of the contribution of inland fisheries to national economic development and to the livelihoods of local populations.

As a final point, this article argues that the generation of more information on the economic and/or social values of small-scale fisheries is not in itself a sufficient condition to support more appropriate agenda-setting or to ensure the implementation of successful policies. Experience shows that the impact of social/economic information generated through a better evaluation process is not merely determined by the quality of that information, but also to a large extent, by the nature and quality of the policy environment. Better evaluation is nothing without improved governance, including political will and adequate policy processes.

References

C. Béné is from the Africa and West Asia Office of the WorldFish Center, P.O. Box 1261 Maadi, Cairo, Egypt; E-mail: c.bene@cgiar.org and A.E. Neiland is from the Institute for Sustainable Development and Aquatic Resources (IDDRA), Portsmouth Technopole, Kingston Crescent, Portsmouth PO 2 8FA, UK; E-mail: neiland@iddra.org
River fisheries in Africa: their relationship to flow regimes

R.L. Welcomme

Abstract

River fisheries in Africa are important because of their contribution of animal protein to human diets. Such fisheries are highly dependent on hydrological regimes and show considerable year-to-year variation in response to natural climatic events. River flow regimes are being increasingly altered by withdrawals by man, principally for agriculture. The modification of hydrological regimes is leading to diminishing catches of fish and changes in the number and size of the species caught. Given that the trend to remove water from rivers for agriculture and power generation will continue, better appraisals of the impacts of such withdrawals are urgently needed so the policies for water allocation can be better defined. The development of tools to aid in such decision-making is equally important.

Introduction

Inland fisheries are fundamental to the livelihood of many African peoples. Freshwater fish contribute a considerable proportion of the animal protein in their diet, especially in areas close to streams and rivers. For example, average fish consumption in Cameroon rainforests is around 47 kg/person/year, compared to 10 kg/person/year for the general population (Obam 1992) and in the Central Delta of the Niger fish consumption is about 10.5 kg/person/year versus to 7.8 kg/person/year for meat (Breuil and Quenzière 1995). In 2000, the nominal catch of edible products on the continent, including fish from inland waters, was 2.2 million t, which represents about 25 per cent of the total world nominal production. About half of this probably came from rivers and their associated wetlands. It has been argued that real catches are much greater than the official estimates recorded in the nominal statistics because of under-reporting of subsistence catches from the many smaller streams (Welcomme 1976). A realistic value is probably double the nominal catch, implying that African rivers and streams produce about 2 million t of fish per year.

Information on fish and fisheries from as early as the 1970s shows that catches of fish from rivers are highly sensitive to hydrological regimes and, hence, to the many natural and human influences on such regimes. Management of river fisheries has proved to be extremely difficult. The highly dispersed nature of the fisheries and the general lack of defined landings make a regular census problematic. They also hinder the regulation of fishers through the types of centralised management common until recently. More serious is the fact that the sensitivity of river fish populations to changes in the hydrological regime means that the fishery is effectively controlled by a number of users, other than the fishers, who impound, control and extract water for their own purposes. This has led to a situation where many fisheries have declined and, if unchecked, will lead to a more widespread impoverishment of river fish resources. Proper management of the river regime by providing for “environmental flows” requires a more thorough understanding of the ecology of the fish and their response to hydrological and fishing pressures.

Factors influencing fish production from rivers

Fish production from rivers is influenced by a number of factors, many of which are related. This paper focuses on three key factors: hydrological regimes, fishing pressure, environmental degradation.

Hydrological regimes

Flood waters are important for most species of fish because the flooding of lateral plains increases the area of food rich habitat and shelter from predators, and provides ideal sites for fish to develop and grow (Welcomme 1979, 1985). The annual hydrological cycle influences the migrations of many species of fish between floodplain and main channel habitats. The abundance and biomass of floodplain dependant species, and the fish catches that depend on them, fluctuate from year to year depending on the strength of flooding. Correlations between catches in a particular year and the intensity of flooding (usually represented by an index of flooding) in the same or preceding years have been found in a number of African rivers (University of Michigan 1971 for the Kafue River; Welcomme 1979) for the Shire River; Moses (1987) for the Cross River; Welcomme (1979) and Lae (1992, 1995) for the Niger River).

The delay between any flood event and the response in a fish community depends on the degree to which it is being exploited. Thus, the relationships between flood strength and catch in subsequent years for the Shire, Kafue and Niger Rivers (Welcomme 1985) showed the main correlations to be with floods in one to two previous years. Lae’s 1992 data for the Niger show that in the late 1980s catches were more closely correlated with floods in the same year and that 69 per cent of the catch consisted of young-of-the-year fish, indicating a general increase in fishing...
pressure. Some authors have also found correlations between catches and the amount of water persisting in the system over the low water period, notably the University of Michigan (1971) for the Kafue flats, although the best correlations were usually with the indices of flooding.

The situation in arid rivers has been less well described although, even during the drought years of the Niger River when the system was in an arid phase, good correlations with the strength of flooding were obtained (Lae 1992). All of this argues that in normal, humid African rivers the flood component of the hydrological regime is the most important factor affecting fish production, although the dry season component of the hydrograph cannot be ignored.

The effects of declining water levels on fish populations and catches were illustrated by the impact of the Sahelian drought from 1970 to 1985 when rainfall declined steadily in the Senegal, Niger and Chad basins. In this case there was no constraint to longitudinal migration, but flooding was much reduced or failed over a number of successive years. Catches declined from 90 000 t/yr to 45 000 t/yr in the Niger basin (Lae 1995). Some rheophilic and floodplain spawning species that like swift flowing water were depleted whereas lenitic and main channel spawning species that prefer still water, such as in lakes and slack water areas of rivers, became more common. These findings closely parallel those of Neiland et al. 1990 on the Benue River. In the Senegal River, catches rose from a pre-drought level of about 15 000 t to about 25 000 t in 1975 and then fell to 10 000 t in 1979. Catches in the Chad basin rose from pre-drought levels of about 100 000 t to 220 000 t in 1974 and fell to only about 35 000 t in 1985 (VandenBossche and Bernascek 1990). Chad basin catches included those from the lake as well as from the Chari-Logone river system, whose contribution became insignificant as the drought progressed. In all three systems, the early stages of the drought were marked by initial increases in catches due to an increased vulnerability of the fisheries and because the existing stocks were concentrated into smaller volumes of water, but in the later stages catches fell as the drought impacted biological production.

Fishing pressure

Most fisheries in African rivers exploit a large number of fish species by using a range of fishing gear (consisting of lines, nets and traps), each adapted to particular species, life stages and habitats. Use of the gear varies from season to season in such a way that nearly all life stages of species are vulnerable to capture. This type of multi-species, multi-gear fishery is especially difficult to survey and does not yield readily to standard mesh-dependent methods of control.

The growing population densities and increasing shortage of land means that many people have been forced into fishing as a means of livelihood. As a result, pressure on inland fish resources has tended to increase over the whole continent over the last twenty years (Welcomme 2003). As fishing effort increases, fishing impacts fish assemblages by successively eliminating the larger individuals and species from the multi-species communities and replacing them with smaller species and individuals. This process does not result immediately in lower catches as the greater productivity and reproduction rate of the smaller species compensates for the lower biomass (Welcomme 1999), but it does change the nature and the value of the fishery. While such intensive fishing pressure is now widespread, the Second International Symposium on the Management of Large Rivers for Fisheries (Phnom Penh, 11-14 February 2003) concluded that there are no proven cases of a river fishery as a whole having collapsed from fishing pressure alone. Where collapses have occurred, they have always been linked to degradation in environmental quality, usually because of altered hydrological regimes caused by dams. The impact of increased fishing pressure exacerbates the effects of such changes in the hydrological regime, but it is the changes to the flows that are of greatest importance.

Unfortunately the history of management of inland fisheries worldwide shows a generally low success rate in containing the growing pressures on fish stocks. This was mainly because of the centralized nature of traditional management whereby all the national waters were regulated by the central governments with little attention to the differing biological and ecological needs of the fish stocks and the social and economic conditions of the fisheries. The recent trend to devolve management through co-management systems may prove more successful in that local communities will have more say in the management of their local resources. However, fisheries management is not only a question of managing the fishery, but also the environment on which the fishery depends and for this different approaches to management at the basin level have to be developed.

Environmental degradation

Most large rivers of Africa have at least one mainstem dam and, some such as the Nile and the Zambezi, have more. There are also a large number of medium-sized dams (reservoir sizes 10 - 100 km²) for irrigation, urban water supply and small-scale power generation. The larger dams are the major causes of degradation of the aquatic environment and disruption of the livelihoods of communities dependent upon farming, fishing and grazing along the river valley.

Although there have been attempts to develop large irrigated areas such as the Gezira in the Sudan and the périmêtre irrigé du Niger in Mali, smaller irrigation projects are more common. As a result there are thousands of small dams (less than 10 km²) spread about the continent, particularly in the northern and southern semi-arid/Sahelian zones, that are installed for irrigation, drinking water for cattle and as a reserve for human use. Individually these small dams will have only minor effects on the watercourses downstream, which often dry out completely for part of the year. However, their cumulative effect is likely to be massive as they influence the hydrograph in many watercourses. They also alter stretches of rapids in smaller streams to form bodies of standing water for which resident fish species are ill equipped.

Dams have a major effect on fisheries downstream. They act as a barrier to upstream and downstream migration. They also regulate water flow so as to change the amount and timing of discharge and can prevent the regular inundation of downriver floodplains. The
loss of floodplains below major dams has been observed and recorded in a few cases. About 100 km2 of the Phongolo River flats and associated lakes disappeared after the closure of the Phongolo-poort reservoir (Coke and Pott 1970). Much of the floodplain of the Senegal River has disappeared following the closure of the Manantali dam and a persistent failure of flooding has also been recorded below the Kainji dam on the Niger River (Sagua 1978). Post-impoundment flow values from the Benue River below the Lagdo reservoir show that peak river discharges have decreased by 44 per cent from 3 330 m3 to 1 870 m3, limiting the extent and duration of the flood (Neilland et al. 1990). Læ (1995) estimated the loss in catch caused by the Selingue and Markala dams at about 5 500 t at flood level corresponding to catches of between 45 000 and 85 000 t/yr. The effect becomes more marked in systems already stressed by low water levels. Catches in the Niger River below the Kainji dam fell by about 50 per cent in three years (1967-69) in the Jebba - Lokoja reach (Otobo 1968) and by 60 per cent in the lower Anambra basin downstream.

The reduction in the catch is usually accompanied by changes in species composition, whereby flow loving and floodplain spawning rheophilic species are replaced by lotic species that favor still waters and those that breed in the main channel. This change also often results in local loss of species.

Conclusion

Rivers in Africa are used for a number of human functions other than fisheries. The needs of high economic profile activities, such as power generation and irrigated agriculture, frequently result in conflicts of interest between extractive industries and the water requirements of the fish and the fisher communities. In such conflicts the interests of agriculture and power generation have invariably prevailed. Apart from the greater financial and political power of the agriculture and power sectors, an important reason for this is that the water requirements for power generation and agriculture are relatively well understood, whereas the requirements of fisheries are less clearly defined. It is, therefore, essential to better refine our understanding of the ways in which fisheries respond to altered flow regimes in order to represent fishery interests more effectively in negotiations for the allocation of water to fish.

Much of the existing information and knowledge on the impact of changes in water flows on fisheries comes from the response of the Niger River to the Sahelian drought and to fisheries in such rivers as the Niger and the Senegal to dam building. Studies and experience in South Africa also give some indication of the costs of remedial activities in already modified systems. Here Hæg et al. (1980) estimated that the Phongolo floodplain [10 265 ha at peak flood and 2 700 ha of river and lakes at mean retention level] required 26 million m3/yr to maintain the mean retention level of its floodplain lakes and a further 100 million m3/yr to flood the whole plain. However, a model developed by Weldrick (1996) showed that the part of the floodplain could be submerged and the lakes could be filled by a discharge of 100 m3 s$^{-1}$ for five days (equivalent to a total discharge volume of 216 million m3/yr). However, this limited information is insufficient to describe the complex impacts that follow changes in the volume, form and timing of floods (Welcomme and Hælls 2001; Bunn and Arthington 2002 for an analysis of impacts).

The various methodologies available for the assessment of impacts on fish and fisheries due to changes in river flows have been reviewed through the Comprehensive Assessment of Water Management in Agriculture. Two methodologies have emerged that provide a potential for analyzing impacts and projecting scenarios of environmental flows for the conservation of fish stocks and fish biodiversity in African rivers. The first is a generalized tool called DRIFT (Downstream Response to Imposed Flow Transformations) that has been developed in South Africa (King et al. In press) to analyse the impacts of a range of altered flows on river ecology and the social setting associated with it. The second is a model of fish populations alone, originally developed by Welcomme and Hælls (1977), that was elaborated by Hælls (2001) to describe the response of fish communities to various hydrological regimes and fishing pressures.

Such initiatives represent only the start of an important process. With the increasing demand for water across the African continent and the proposals to meet local deficits by exerting greater control of river flows and water abstractions, it is inevitable that the living aquatic resources that provide such an important source of protein to the people will be put under increasing stress. It is urgent to study further and improve the understanding of the response of these resources to altered flows so that informed decisions can be made about a better allocation of water. One initiative currently getting underway that should help achieve this is the CGIAR Challenge Program on Water and Food which is fostering research on environmental water flows (Box 1).

Acknowledgement

The author is grateful to Dr. A.A. Mohamed Hatha, School of Environmental Sciences, Mahatma Gandhi University, Kottayam, India, and Dr M. Harikrishnan, Department of Zoology and Aquaculture, St. Albert’s College, Kochi, India, for their comments on an earlier draft of this manuscript. The encouragement and assistance provided by Ms Nirmala James during the preparation of this manuscript is much appreciated.

References

The CGIAR Challenge Program on Water and Food is launching an ambitious research, extension and capacity building program designed to significantly increase the productivity of water used for agriculture. The immediate objectives of the Program are to achieve:

- Food security for all at household level.
- Poverty alleviation, through increased sustainable livelihoods in rural and peri-urban areas.
- Improved health, through better nutrition, lower agriculture-related pollution and reduced water-related diseases.
- Environmental security through improved water quality as well as the maintenance of water related ecosystem service, including biodiversity.

Focusing geographically on nine river systems referred to as Benchmark Basins (Nile, Limpopo, Volta, Karkeh, Indo-Gangetic plains, Mekong, Yellow, Sao Francisco and a group of Andean basins) the Program will address five principal inter-related research themes: crop water productivity improvement, multiple use of upper catchments, aquatic ecosystems and fisheries, integrated basin water management systems, and the global and national food and water systems. The WorldFish Center will coordinate the aquatic ecosystems and fisheries theme on behalf of the Challenge Program.

The Aquatic Ecosystems and Fisheries theme has identified four main areas of research that will be given priority under the Program: Policies, Institutions and Governance; Valuation of Ecosystem Goods and Services, and the Costs of Degradation; Environmental Water Requirements; and Improving Water Productivity. Expected outputs from research in these areas will include:

1. Assessment of the factors determining access to aquatic resources by target communities and social groups and how these can be managed in each focal basin.

2. Specific guidance on the form of governance systems, policies and institutions, that foster equitable and sustainable management of aquatic ecosystems and their resources in each focal basin, and generic guidance on approaches that can be used in other basins.

3. Improved technical capacity and information systems that will support the development and application of such governance systems, policies and institutions.

4. Assessments of the ecological functions of key aquatic ecosystems, and valuations of the goods and services provided by these and the costs of ecosystem degradation.

5. Improved tools and methodologies for generating such information rapidly and in an accessible manner.

6. Projections of the impacts of specific degrees of hydrological change on the ecological functions of different aquatic ecosystems in selected basins and of the different goods and services they provide.

7. Improved methodologies for assessment of environmental water requirements of different aquatic ecosystems.

8. Quantification of the freshwater requirements of coastal ecosystems in selected basins.

9. River fisheries production models developed and applied in selected basins.

10. Assessment of the current and potential contribution of aquatic resources to water productivity in different farming systems, notably irrigated and flood-prone systems.

11. Quantification of the benefits that can be obtained by integrating fish production and harvest of other aquatic animals and plants into farming systems.

12. Improved technologies for integrating aquaculture and fisheries into different farming systems.

Those wishing to know more about or contribute to this program should visit www.waterforfood.org

R.L. Welcomme is from RRAG, Imperial College, United Kingdom.
E-mail: welcomme@dial.pipex.com
FishBase species profile: Clarias gariepinus (Burchell, 1822)1 North African catfish

Prepared by the FishBase team

In this issue NAGA introduces a new page on profiles of fish species. This page will be a permanent feature of the NAGA and will be based on information derived from FishBase (http://www.fishbase.org), the world’s premier information system on fishes and a global public good. FishBase is being developed by the WorldFish Center and an International Consortium. The first species selected is the North African catfish Clarias gariepinus, one of the most important freshwater fish species in Africa. It has been chosen in honor of Prof Dr Guy Teugels of the Musée Royal de l’Afrique Centrale (MRAC) of Tervuren, Belgium, who recently passed away (see Announcement on page 39) and who spent many years investigating this species.

Common names North African catfish (FAO English), Fig. 1; Poisson-chat nord-africain (FAO French); Pez gato (FAO Spanish); 80 names from 33 countries.

Importance fisheries, aquaculture (Fig. 2) and game. Distribution: almost Pan-African, absent from Maghreb, the upper and lower Guinea, the Cape province and probably also Nogal province. Asia: Asia Minor in Jordan, Israel, Lebanon, Syria and southern Turkey (Fig. 3). Widely introduced to other parts of Africa, Europe and Asia.

Ecology occurs mainly in quiet waters, lakes and pools but may also occur in fast flowing rivers and in rapids. Widely tolerant of extreme environmental conditions. The presence of an accessory breathing organ enables this species to breathe air when very active or under very dry conditions. Remains in the muddy substrates of ponds and occasionally gulps air through the mouth. Can leave the water at night using its strong pectoral fins and will be based on information derived from FishBase (http://www.fishbase.org), the world’s premier information system on fishes and a global public good. FishBase is being developed by the WorldFish Center and an International Consortium. The first species selected is the North African catfish Clarias gariepinus, one of the most important freshwater fish species in Africa. It has been chosen in honor of Prof Dr Guy Teugels of the Musée Royal de l’Afrique Centrale (MRAC) of Tervuren, Belgium, who recently passed away (see Announcement on page 39) and who spent many years investigating this species.

Fig. 2. Aquaculture production of Clarias gariepinus by continent from FAO statistics2

Larvae: 4.4-4.8 mm hatching length. Maturity: Lm=30.5-37.5 cm TL; tm=2 yrs. Remarks: spawning takes place during the rainy season in flooded deltas. The fishes make a lateral migration towards the inundated plains to breed and return to the river or lake soon afterwards while the juveniles remain in the inundated area.

Growth/mortality parameters Max. size: 170 cm TL (male/unsexed), 60.0 kg; L infinity = 139 cm TL; K = 0.09/yr; Phi prime = 3.24; t_c = -1.27 yrs.; N atural Mortality (M) = 0.20/yr. L/W relationship: W = 0.0105 * L3.013.

Chromosomes 2n = 56; CF = 8m + 24-25sm + 23-24t; NF = 88-89.

Proximate analysis (%): moisture (76.5); protein (19.0); fat (3.0); ash (1.5) based on 100 g edible weight.

For further information: contact the WorldFish Center FishBase Project Team, Los Baños, Philippines (fishbase@cgiar.org)

Fig. 3. Global distribution of Clarias gariepinus showing native3 and introduced ranges1

1 FishBase online sources used in producing the above species profile:

1 http://www.fishbase.org/Summary/SpeciesSummary.cfm?id=1934&genusname=Clarias&speciesname=gariepinus
4 http://www.fishbase.org/Introductions/IntroductionsList.cfm?id=1934&GenusName=Clarias&SpeciesName=gariepinus&fc=139&stockcode=2130
Using ReefBase to create customized maps
Prepared by the ReefBase team

One of the most popular sections of the ReefBase website is the online GIS that enables users to create an almost unlimited range of maps showing a wide variety of features. A new version of the GIS, offering an even larger array of facilities and data layers, is online as of early September. In this article, we will provide an introduction to the ReefBase GIS and also highlight some of the powerful but lesser used features of the system.

Basic features

The ReefBase GIS is accessed from the ReefBase homepage (www.reefbase.org) via the Maps and Photos menu link. Choosing “Online GIS” takes you to the introduction page where you can see an explanation of the components of the GIS screen. Click on Start ReefBase GIS to launch the mapping program. By default, you are taken to the ReefBase World Map marked with country boundaries, coastlines and coral reefs. As you zoom in, mangroves and detailed map features such as rivers, lakes, and roads will automatically also become visible. The visible features are shown in the legend at the left of the screen (Fig. 1). A check box to the left of the layer name indicates that the layer has been turned on and is visible. You can make other layers such as coral bleaching or marine protected areas visible by clicking on the check box. The circular “radio button” to the left of the layer name indicates whether or not it is an “active layer” for the purposes of querying. If you would like to see more detailed legend information on a layer (such as the source of the data and an explanation of the symbol colors) just click on the name of the layer. By default, the Topography and Bathymetry layers are turned off, since they increase the time it takes for the map to be redrawn. However, these two features can dramatically increase the aesthetic appeal of the map, as long as you do not have too many other information layers turned on at the same time.

Finding a particular area

Zooming in and moving around to a particular area of interest can be achieved through the zoom-in and pan tools from the columns of icons at the right of the screen. Zooming back out can be achieved either by selecting a small area with the zoom-out tool, or by clicking on the “show full extent” tool to go back to the full map of the world. If you know the latitude and longitude of the area you wish to view, simply click the pin icon and enter latitude and longitude in decimal degree format. If you are interested in going straight to a map of a particular country or region, then use the drop-down list in the top middle of the screen.

Table 1. Tools for moving and zooming a map

<table>
<thead>
<tr>
<th>Tool</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Go to Lat-Long</td>
<td>Clicking this button will open a small window where you can type the x and y (long./lat.) coordinates you would like to zoom in to. Coordinates must be in decimal degrees and separated by a comma.</td>
</tr>
<tr>
<td>Zoom in</td>
<td>Select this button and (a) click on a point on the map or (b) draw a rectangle to zoom in.</td>
</tr>
<tr>
<td>Zoom out</td>
<td>Click on the map after selecting this button to zoom out.</td>
</tr>
<tr>
<td>Zoom all</td>
<td>Click this button to zoom out to full extent of the map (e.g., entire world).</td>
</tr>
<tr>
<td>Pan/move</td>
<td>Select this button, then click on a point on the map and “move” it elsewhere (holding the mouse down). Once you release the mouse, the map will redraw and “move” as you indicated.</td>
</tr>
<tr>
<td>Overview map</td>
<td>Click this button to view a small overview map indicating the geographic extent of the map you are viewing.</td>
</tr>
</tbody>
</table>

Getting information about a specific point

Click this button, then click any data point or draw a rectangle (new!) on the map to find information on the point(s) or area(s) in the selected active layer (see above). After selecting data points on the map, a popup window will display more detailed information on each record selected. A small pointing-hand indicates which data point on the map the information applies to.

Using a high resolution map in other applications

Once you have the desired view and features displayed on the screen you can save this image for use in presentations or documents. A quick way is to right click on the map portion of the screen (option-click on a Mac) and choose Copy. You can then switch over to an application such as PowerPoint or Word and use Paste to insert the map. This method gives you an image that is the same resolution as your screen. However, by clicking on the save icon on the left-hand toolbar you will be presented with a screen that lets you choose several higher resolutions, up to a maximum of about 2,000 x 2,000 pixels. This image is displayed in reduced size but can be copied or saved to your disc by “right clicking” on it and selecting “save image as”.

Table 2. Tools for moving and zooming a map

<table>
<thead>
<tr>
<th>Tool</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Go to Lat-Long</td>
<td>Clicking this button will open a small window where you can type the x and y (long./lat.) coordinates you would like to zoom in to. Coordinates must be in decimal degrees and separated by a comma.</td>
</tr>
<tr>
<td>Zoom in</td>
<td>Select this button and (a) click on a point on the map or (b) draw a rectangle to zoom in.</td>
</tr>
<tr>
<td>Zoom out</td>
<td>Click on the map after selecting this button to zoom out.</td>
</tr>
<tr>
<td>Zoom all</td>
<td>Click this button to zoom out to full extent of the map (e.g., entire world).</td>
</tr>
<tr>
<td>Pan/move</td>
<td>Select this button, then click on a point on the map and “move” it elsewhere (holding the mouse down). Once you release the mouse, the map will redraw and “move” as you indicated.</td>
</tr>
<tr>
<td>Overview map</td>
<td>Click this button to view a small overview map indicating the geographic extent of the map you are viewing.</td>
</tr>
</tbody>
</table>
Saving your favorite map configuration

With this feature you can add the exact settings of the current map to your Favorites (IE) or Bookmarks (Netscape) folder. Next time you’re online, simply select the saved link to send your browser to the exact same map.

Selecting other types of maps

While the ReefBase world map provides a great standard map onto which you can overlay a number of key datasets, there is a range of other special thematic maps that can be chosen from the pull down menu on the top right of the screen.

Reefs At Risk maps

These maps display the potential threats to coral reefs from human activities, as modeled by the Reefs At Risk project. You can select from the following views:

- Coral reefs classified by overall threat:
 - Overall threat (combined from the four individual threat layers)
 - Threat: Overexploitation
 - Threat: Coastal development
 - Threat: Marine pollution
 - Threat: Inland pollution and sedimentation

Reefs At Risk analyses have been completed at the global level at 4 km resolution, and at a more detailed resolution (1 km) for Southeast Asia. Currently, a regional Reefs at Risk analysis is being completed for the Caribbean and will be made available here in due time.

Reefs from space

- NASA Imagery (New)

This new map enables you to see where ReefBase has photographs from space (Space Shuttle, International Space Station) and to zoom into these. The background global map is based on MODIS satellite data from NASA. Reef data, such as monitoring and MPAs, can still be included on these maps.

- NASA SEAWIFS bathymetry (New)

This satellite data has been passed through depth-algorithm, showing shallow water bathymetry. It also provides an attractive alternative backdrop for point data.

ReefCheck

All of the thematic maps in the ReefCheck reports of the last five years can be viewed at any scale. There are a total of 11 maps showing human impact, and 29 separate maps indicating the relative abundance of different reef organisms.

NOAA Degree Heating Weeks (New)

As a result of a collaborative effort between NOAA and ReefBase, these
maps bring together NOAA's Degree Heating Weeks (satellite-based maps indicating areas of thermal stress), and ReefBase's database on coral bleaching observations. A new map is added every month. You can select Degree Heating Weeks maps for any particular year and month and then display all bleaching records on top of this map for the same period.

World Ocean Atlas 2001 (New)

This is a collection of maps showing annual, seasonal, and monthly averages for various ocean variables: temperature, salinity, oxygen, nitrate, phosphate, silicate, and chlorophyll.

Statistical maps - Geographic areas

Color-coded marine areas indicate reef, continental shelf, marine, mangroves, and land areas, as well as coastline length per country.

Statistical maps - Socio-economics

Color-coded marine areas indicate total population, population living in the coastal zone, GDP/capita, and fish consumption per capita by country.

Giving us feedback on the ReefBase GIS

While we have included a number of new and improved features in the current version of the ReefBase GIS, we realize that there is always room for improvement. Users are encouraged to send comments on any particular map view using this tool. ReefBase will remember the exact area you have selected and the layers that are turned on. You can then provide comments on this map, including advice on errors, omissions, and additional data availability. With this feedback we will be able to continuously upgrade the ReefBase GIS.

ReefBase is a project by WorldFish Center and the International Coral Reef Action Network (ICRAN), with financial support from the United Nations Foundation (UNF). In addition, we would like to acknowledge support from the World Bank, who provided funds to strengthen ReefBase as a “Global Public Good”. Much of the GIS data has been developed in collaboration with UNEP-WCMC, WRI, NASA, NOAA, ReefCheck, and others.
Potential of genetics for aquaculture development in Africa

W. Changadeya, L.B. Malekano and A.J.D Ambali

Abstract

Aquaculture in Africa is fairly insignificant by world standards and accounts for a mere 0.4 per cent of global aquaculture production. The application of genetics can play an important role in efforts to increase aquaculture production in Africa through methods such as selective breeding, hybridization, chromosome manipulation and use of YY “supermales.” Other issues that need to be addressed are limited genetic research facilities, funding, human capacity and suitable species for aquaculture.

Introduction

In comparison to the rest of the world, aquaculture in Africa is insignificant. The continent as a whole contributed a mere 0.4 per cent to the total world aquaculture production from 1984 to 1995 (Hecht 2000). Although currently undeveloped, aquaculture is expected to play an important role in future by providing food and employment for people in Africa (Miller et al. 2002).

The general characteristics of aquaculture production, its constraints and development potential differ considerably in North Africa and the sub-Saharan region. North Africa has a far greater potential. In Egypt, for instance, aquaculture has been practiced extensively for a long time, while in other countries of the continent it is a relatively new technology and has not yet been recognized as a consolidated food production sector in national economies. In terms of physical potential, North Africa has suitable locations that have been developed for farming of marine and estuarine species for export to the European markets. The new farms use more sophisticated, intensive production technologies that have been imported from Mediterranean countries. On the other hand, aquaculture in sub-Saharan Africa has been oriented to domestic markets and is mostly practiced by small-scale farmers. Although there is a physical potential for expansion of aquaculture in this region, factors such as the novelty of aquaculture, the generally poor economic conditions in many countries, and the relative paucity of entrepreneurial skills and credit facilities hamper its development (FAO 1997).

Challenges and constraints

There is potential for a significant increase in aquaculture production in Africa through sustainable intensification and horizontal expansion into inland waters and coastal areas. Positive growth in aquaculture can be realized if a number of constraints and challenges facing the aquaculture sector are addressed. These include: (i) lack of localized knowledge systems on aquaculture among African farmers; (ii) prevalence of foreign aid programs organized on a top-down basis with inconsistent, short-term goals and excessive dependence on donor funded aquaculture development programs; (iii) low allocation for aquaculture development in national budgets; (iv) wholesale importation of traditional crop agriculture practices into aquaculture, such as seed recycling; (v) poor or slow growth of cultured species; (vi) poor broodstock management; (vii) loss of genetic diversity in culture system; (viii) contamination of the wild and indigenous gene pool; (ix) lack of baseline genetic data; and (x) poor species identification (Pullin and Capilli 1988). This paper discusses the potential of genetics in addressing some of the constraints and challenges identified above.

Several species are used in aquaculture in Africa (Table 1). The major ones are: Oreochromis niloticus, O. aureus, Sarotherodon galilaeus and Tilapia zilli in North and West Africa; O. mossambicus, O. shiranus, T. rendalli, Clarias gariepinus (African catfish), and rainbow trout (Salmo gairdneri and S. trutta) in southern Africa; S. melanotheron is a relatively new, but important species in West Africa. The use of genetics in aquaculture development on the African continent has mainly focused on tilapia culture. Hence, the discussion in this paper uses tilapia to illustrate its case.

The tilapias (Cichlidae), some 870 species (Skelton 1993), are the major cultured species in Africa. They are suitable for culture and increasing the availability of protein and the quality of nutrition of poor fish farmers and consumers. Species of the genera Oreochromis, Sarotherodon and Tilapia have been widely exploited in aquaculture and natural fisheries. Within the Oreochromis genus, O. mossambicus, O. niloticus and O. aureus are considered the most important species for aquaculture.

Domestication of tilapias in Africa is still in the early stages. The genetic resources have been poorly managed during the past 40 years of intensive and extensive culture (Kocher 1997). Broodstock used in seed production are generally from the wild. Owing to small pond sizes and frequent droughts, the ponds generally dry out and seed or brood stock is easily lost. Hybridization and inbreeding in the ponds is also common as the strains recruited into the farms easily interbreed and genetic purity is lost. Kocher (1997) reports of a genetic survey that revealed heterozygosity of less than 10 per cent in several strains of farmed tilapia populations compared to their wild counterparts.
Genetic approaches used

Several approaches have been used to improve the performance of tilapias in aquaculture and these include genetic manipulation. These techniques have been very successful in other countries and seem to indicate an opportunity for increasing aquaculture production in Africa.

Selective breeding

In Africa, selective breeding of tilapias has been mainly aimed at increasing their growth rate so that a farmer can realize quicker and higher yields. In other parts of the world, selection has also been done for skin color, body conformation, fillet yield and cold tolerance (Behrends et al. 1982, 1990; Fitzsimmons 2000). Protocols used to develop the GIFT strain O. niloticus by the WorldFish Center and its partners in the Philippines and Norway are currently being used in national research institutions in Côte d’Ivoire, Egypt, Ghana and Malawi to improve local species and strains of tilapias through selective breeding (Gupta et al. 2001). Selective breeding can ameliorate the problem of poor or slow growth rate among cultured fish species. Most of the tilapia species cultured in Africa have not yet been adequately domesticated and, therefore, the application of selective breeding in the domestication process can improve the performance of the strains. The GIFT strain O. niloticus is reported to grow 85 per cent faster than other farmed strains in the Philippines, have better survival rates, and can be grown without commercial feed in extensive systems (M. Gupta personal communication). Application of similar protocols on the stocks within Africa would improve the performance of local tilapias. However, selective breeding takes a long time to improve a strain and is expensive. The risks for selective breeding programs are that they are unlikely to receive long-term financial support from governments and donors for genetic research, and labor turn-over is high as trained personnel change jobs in search for better remuneration.

Hybridization

Hybridization has been used as a technique of improving yield of tilapias. The cultured tilapia species are closely related and readily produce viable hybrids. McAndrew et al. (1988) indicate that one popular strain may contain genes from as many as four species. Hybrids have also been produced to obtain all-male fry that have better growth than mixed sex populations.

Most of the hybrids produced in aquaculture in Africa are unplanned and, hence, they have not been monitored adequately. For example, in Malawi, hybrids between O. shiranus chilwae and O. shiranus shiranus, and O. shiranus sp and O. mossambicus have been produced unwittingly (Ambali et al. 1999). There is a tendency to import improved strains developed from elsewhere, instead of concentrating on developing native genetic resources, e.g., O. niloticus has been introduced into Zambia and Zimbabwe because the species grows faster than indigenous species. Some of these introduced strains have escaped into the wild and hybridized with indigenous species because of poor management. In the Limpopo river in South Africa, O. niloticus has produced hybrids with O. mossambicus (Brink et al. 2002). Ecological risks have been reported from hybridization in some countries. While hybridization may bring about hybrids with a combination of desirable traits from different groups, the possibility of sterile and non-sterile hybrids may lead to introgression and breakdown of genetic distinctiveness (Penman 1999).

Table 1. Indigenous fish farmed in Africa

<table>
<thead>
<tr>
<th>Species</th>
<th>Countries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anguilla anguilla</td>
<td>Algeria, Morocco, Tunisia</td>
</tr>
<tr>
<td>Chrysichthys nigrodigitatus</td>
<td>Côte d’Ivoire, Nigeria</td>
</tr>
<tr>
<td>Clarias anguillaris</td>
<td>Burkina Faso, Egypt</td>
</tr>
<tr>
<td>Clarias gariepinus</td>
<td>Cameroon, Central African Republic, Ghana, Guinea, Lesotho, Malawi, Mali, Nigeria, Rwanda, South Africa, Swaziland, Tanzania, Zambia</td>
</tr>
<tr>
<td>Dicentrarchus labrax</td>
<td>Algeria, Egypt, Morocco, Tunisia</td>
</tr>
<tr>
<td>Heterotis niloticus</td>
<td>Gambia, Mali, Nigeria</td>
</tr>
<tr>
<td>Lates niloticus</td>
<td>Nigeria</td>
</tr>
<tr>
<td>Liza ramada</td>
<td>Tunisia</td>
</tr>
<tr>
<td>Mugil cephalus</td>
<td>Egypt, Tunisia, South Africa</td>
</tr>
<tr>
<td>Oreochromis andersonii</td>
<td>Zambia</td>
</tr>
<tr>
<td>Oreochromis aureus</td>
<td>Côte d’Ivoire</td>
</tr>
<tr>
<td>Oreochromis macrochir</td>
<td>Zambia</td>
</tr>
<tr>
<td>Oreochromis mossambicus</td>
<td>Malawi, Mozambique, South Africa, Swaziland</td>
</tr>
<tr>
<td>Oreochromis niloticus</td>
<td>Burkina Faso, Burundi, Cameroon, Central African Republic, Congo, Côte d’Ivoire, Egypt, Gabon, Ghana, Kenya, Liberia, Mali, Mozambique, Niger, Rwanda, Sénégal, Sierra Leone, Sudan, Tanzania, Togo, Uganda, Zambia</td>
</tr>
<tr>
<td>Oreochromis shiranus</td>
<td>Malawi</td>
</tr>
<tr>
<td>Pomatomus saltator</td>
<td>Tunisia</td>
</tr>
<tr>
<td>Sarotherodon melanotheron</td>
<td>Côte d’Ivoire</td>
</tr>
<tr>
<td>Solea solea</td>
<td>Algeria, Tunisia</td>
</tr>
<tr>
<td>Sparus aurata</td>
<td>Algeria, Egypt, Morocco, Tunisia</td>
</tr>
<tr>
<td>Tilapia rendalli</td>
<td>Malawi, Swaziland, Tanzania, Zambia</td>
</tr>
<tr>
<td>Tilapia zilli</td>
<td>Uganda</td>
</tr>
</tbody>
</table>

Source: FAO (1997); FishBase (1998)
Amplified Polymorphic DNA (RAPD), Africa, molecular markers such as Randomly
selected in tilapia has been carried out at the University of New
Molecular marker-analyzed for tilapia has been
Theoretically, marker-assisted selection is still in the early stages
to develop superior strains through marker-
assisted selection is still in the early stages in tilapia improvement programs.Work on developing linkage maps for tilapia has been
carried out at the University of New Hampshire, offering opportunity to track
select desirable genes from the map (Kocher 1997). Theoretically, marker-
assisted selection takes a shorter period to improve performance of individuals in a population as compared to conventional breeding.
The only constraint to the use of this technique is the cost involved in developing linkage maps.

Although feasibility of marker-assisted selection is yet to be demonstrated in Africa, molecular markers such as Randomly Amplified Polymorphic DNA (RAPD), Restriction Fragment Length Polymorphism (RFLP), and microsatellites have been employed to generate genetic data for assessing genetic diversity, population structure, and migration among fish populations. For example, small-scale strain comparisons were carried out in Malawi during 1997-99 where wild populations of O. shiranus grew faster than domesticated stocks. Microsatellite DNA analysis of the populations revealed that farm populations had very low genetic diversity compared to their wild counterparts (mean number of alleles 4.4±1.03 and 13.2±3.31, respectively) and there was introgression of O. mossambicus into the O. shiranus populations (Ambali et al. 1999). O. mossambicus populations from several water bodies in southern Africa have been recruited for genetic improvement at the University of Stellenbosch in the Republic of South Africa. A analysis of the genetic structure and diversity provided evidence for high levels of variation within and between the 12 populations (Brink et al. 2002). French scientists and the Institute of Aquatic Biology in Ghana have subjected West African cultured species like S. melanotheron to genetic investigation using various molecular markers. Some of the results showed that populations of S. melanotheron from Sierra Leone, Sénégal, Liberia, Ghana, Togo, Côte d’Ivoire, Benin and Congo-Brazzaville share a common ancestry (J.F. Agnése personal communication to W. Changadaya).

Gynogenesis
“YY supermales” have been produced and assessed in South Africa through a collaborative project between the University of Stellenbosch (RSA) and the University of Wales Swansea (UK). Significant progress was made in the production of genetically male tilapia (YY males) in O. mossambicus with 20YY males identified by the end of the project (Brink et al. 2002). O. niloticus YY males were introduced at Kafue fish farm in Zambia from the University of Wales Swansea (Jamu and Brummett 2002). Baseline data collected during the trials in South Africa suggest that gynogenesis increased the yield and can thereby make a meaningful contribution to improving livelihoods from aquaculture (Brink et al. 2002).

Other genetic approaches
Three genetic techniques, namely, selective breeding, hybridization, and molecular markers application have been used in Africa (Table 2). Other genetic techniques have been successfully applied elsewhere to improve the performance of cultured fish. Such techniques may possess a potential for improving aquaculture production, but have not been widely tried.

Polyplody
This technique produces sterile polyplody, triploid or tetraploid organisms that do not invest energy into reproduction. Ploidy manipulation employs the same physical and chemical treatments used in the diploidisation phase of gynogenesis. Alternatively, triploidy can be obtained by mating normal diploid fish with tetraploids. Their main advantage is that they are sterile, but there is no increase in the growth rate. In tilapia, triploidy retards gonadal development and, hence, uncontrolled reproduction that causes stunted growth (Bramick et al. 1995). This technique has been employed in rainbow trout (Thorgaard 1992) and the Pacific oyster (Guo et al. 1996), but may not be feasible in several species of fish due to the low viability of induced tetraploids (Cassani et al. 1990; Cherfas et al. 1993).

Genetic engineering
Genetic engineering and production of transgenic organisms has become an active area of research and development in aquaculture. In tilapia, transgenics that contain the exogenous growth hormone (GH) gene construct derived from Chinook salmon have demonstrated growth enhancement (Rahman and Maclean 1997). Transgenic tilapia grow three times more than their non-transgenic siblings in a period of seven months. Transgenic common carp, catfish, Coho salmon, and tilapia have been produced and are being tried for commercial use (FAO 1997). Although transgenic fish have demonstrated increased growth and have the potential to raise aquaculture production, it will be some time before they will be commercially farmed because several issues against transgenic products must be addressed. These include: (i) transgenic fish

Table 2. Genetic approaches used in Africa

<table>
<thead>
<tr>
<th>Method</th>
<th>Countries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selective breeding</td>
<td>Côte d’Ivoire, Egypt, Ghana, Malawi, Sénégal, South Africa</td>
</tr>
<tr>
<td>Hybridization</td>
<td>Côte d’Ivoire, Malawi, Egypt, Malawi, Nigeria</td>
</tr>
<tr>
<td>Molecular marker</td>
<td>Côte d’Ivoire, Egypt, Ghana, Malawi, Nigeria</td>
</tr>
<tr>
<td>Gynogenesis</td>
<td>South Africa, Zambia</td>
</tr>
<tr>
<td>Genetic engineering</td>
<td>None</td>
</tr>
</tbody>
</table>

Crossing a female Tilapia tholloni with a male O. mossambicus yields 100 per cent females, and crossing female O. spirulus with male O. leucostictus yields 98 per cent males (Agnése et al. 1998). These introgressive hybridizations have led to loss of genetic purity of the indigenous stocks (Agnése et al. 1998; Ambali et al. 1999). In lake Ayami in Côte d’Ivoire, T. busumana and T. discolor have been reduced in numbers and even disappeared in catches. They have been replaced by S. melanotheron, an introduced species.

If hybridization is chosen as a technique for improving the performance of the indigenous population in aquaculture, there should be well-established genetic characterization records in order to monitor the long-term purity of the parental lines. Molecular markers can be employed to generate baseline genetic data of indigenous populations, which can be used later to check if there is contamination of wild and indigenous gene pools through hybridization. A great deal of effort is required to breed and maintain these parental lines, and most African countries cannot afford the costs involved.

Molecular marker-assisted selection
Use of genetic markers to identify loci that control quantitative traits (QTL) and to develop superior strains through marker-assisted selection is still in the early stages in tilapia improvement programs. Three genetic techniques, namely, selective breeding, hybridization, and molecular markers application have been used in Africa (Table 2). Other genetic techniques have been successfully applied elsewhere to improve the performance of cultured fish. Such techniques may possess a potential for improving aquaculture production, but have not been widely tried. Three genetic approaches have been identified by the end of the project (Brink et al. 1999). The technique has been employed in rainbow trout (Thorgaard 1992) and the Pacific oyster (Guo et al. 1996), but may not be feasible in several species of fish due to the low viability of induced tetraploids (Cassani et al. 1990; Cherfas et al. 1993).

Genetic engineering
Genetic engineering and production of transgenic organisms has become an active area of research and development in aquaculture. In tilapia, transgenics that contain the exogenous growth hormone (GH) gene construct derived from Chinook salmon have demonstrated growth enhancement (Rahman and Maclean 1997). Transgenic tilapia grow three times more than their non-transgenic siblings in a period of seven months. Transgenic common carp, catfish, Coho salmon, and tilapia have been produced and are being tried for commercial use (FAO 1997). Although transgenic fish have demonstrated increased growth and have the potential to raise aquaculture production, it will be some time before they will be commercially farmed because several issues against transgenic products must be addressed.

These include: (i) transgenic fish...
may escape into the wild and disrupt natural populations; (ii) the "transgenes" could be passed on to wild relatives; and (iii) consumers may not accept genetically modified fish.

Constraints to application of genetics

Application of genetics to aquaculture in Africa has been constrained by a number of factors.

Limited research facilities Research facilities are limited and mostly state-owned in almost every African country where aquaculture is practiced. Many African universities also do not have research on aquaculture, with technology development and transfer coming mainly through donor-funded projects. Among the many aquaculture research centers in Africa, only a few are known for genetics research, namely, the WorldFish Center's regional center in Addis Ababa, Egypt, and the University of Stellenbosch, Republic of South Africa. The availability of machinery and facilities for conducting genetic research is dependent on the donor community as national governments are unable to provide the funds and because research is given a low priority in most national budgets.

Limited funding Although the majority of aquaculture systems in Africa were introduced through technology development and transfer projects, most research, development, and extension centers are non-functional at present. Even when there are funds for research in aquaculture, only limited amounts are allocated to research in genetics (Yapi-Gnaoré 2002).

Limited skills Capacity to conduct aquaculture genetics research exists in most African universities, but very few experts are permanently based in research stations, which are usually government owned. It would be fruitful to enhance collaboration between universities with the capacity for genetics research and government departments with the infrastructure for undertaking research and a mandate to increase production. In addition, there is a need to train government personnel in aquaculture genetics.

Crop agriculture transplanted to aquaculture In most African countries, agriculture is new compared to traditional agriculture. Most fish farmers are smallholder farmers who own small pond facilities on their farmlands. These farmers tend to transfer traditional practices from crop agriculture, such as seed recycling, into aquaculture and do not fully appreciate the importance of acquiring genetically improved strains. In areas where aquaculture is not on a commercial scale, the market for good quality fingerlings and broodstock is virtually nonexistent. This has compromised proper broodstock management.

Lack of suitable domesticated species In Africa, *O. niloticus* appears to be the best candidate species, but it is not widely domesticated, except in North Africa. The introduction of non-indigenous species has led to hybridization with other related species and the production of unplanned hybrids. The management of introduced and translocated species is poor due to the lack of proper broodstock management and containment facilities. The introduction of the Nile perch (*Lates niloticus*) in lake Victoria led to the elimination of about 65 per cent of the endemic haplochromine fauna and caused the loss of about 200 taxa from the lake (Goldschmidt et al. 1993; Shumway 1999). Suitable domesticated species that could be genetically improved so as to enhance their performance in aquaculture should be identified for different regions. This process should be done simultaneously with the development of broodstock management protocols suitable for the specific species.

Way forward

Genetic improvement has a role to play in increasing aquaculture production in Africa. The lack of suitable species has been identified as one of the key factors that have constrained the adoption of aquaculture in most African countries, even though environmental conditions are favorable and water is available. Promotion of such methods as selective breeding, hybridization, and chromosome manipulation will help in improving aquaculture production. The DNA probes, especially microsatellite DNA, should be employed in breeding programs to establish records of family relationships and pedigrees, and determine the genetic stock structure of the natural populations. Genetic improvement should not compromise conservation of biological diversity in aquaculture and in the wild. This is particularly important for most aquaculture species in Africa as these are indigenous and need to be conserved. Simple selective breeding of indigenous species within their natural zoogeographical zones would provide yield improvement without causing significant genetic deterioration of the wild populations. Import of genetically improved strains or other strains that do well in Asia should be discouraged, while encouraging improvement of native species. Lessons can be drawn from other continents, e.g., Europe where Atlantic salmon taken from the Baltic Sea to Norway infected Norwegian Atlantic salmon with a parasite to which it had no resistance (Bartley and Martin 2002).

References

shiranus (Trewavas) associated with the early stages of national aquaculture development in Malawi. Aquaculture Research 30:579-588.

W. Changadeya, L.B. Malekano and A.J.D. Ambali are from the Biotechnology-Ecology Research and Outreach Consortium (BioERO C), PO Box 403, Zomba, Malawi.

E-mail: aambali@sdnp.org.mw
Expert consultation on ecological risk assessment of genetically improved fish

Studies undertaken in recent years on the genetic improvement of commercially important cultured fish species by selective breeding and other non-transgenic mechanisms have started to yield results and improved strains are now being disseminated by most member countries of the International Network on Genetics in Aquaculture (INGA).

For example, improved carp and tilapia breeds now exist in Bangladesh, China, Fiji, India, Indonesia, Malaysia, the Philippines, Thailand, and Vietnam, and are being disseminated to farmers.

Improved strains are expected to bring significant economic and social benefits to poor people in developing countries. However, if not properly managed, these could also lead to risks to aquatic ecosystems and biodiversity once they escape into the natural environment. Hence, before the introduction and dissemination of improved strains are undertaken, it is imperative that relevant policies and protocols are reviewed, methods to assess the possible ecological risks formulated, and ways and means of averting any possible impacts identified, including measures to contain escapes.

With funding support from the Norwegian Agency of Development Cooperation (NORAD), the INGA/WorldFish Center, in collaboration with the Bangladesh Fisheries Research Institute, organized an Expert Consultation on Ecological Risk Assessment of Genetically Improved Fish during 4-8 August 2003 in Dhaka, Bangladesh. Fifty-four participants attended the meeting. These included aquaculturists, geneticists, ecologists, biodiversity specialists, researchers, administrators and development workers from 20 countries representing national institutions in Asia, Africa, Europe, North America, and the Pacific, advanced scientific institutions and regional/international organizations (i.e., Food and Agriculture Organization of the United Nations - FAO, World Conservation Union-IUCN, Southeast Asian Fisheries Development Center - SEAFDEC, Secretariat for the Pacific Community-SPC, Network of Aquaculture Centres in Asia-Pacific - NACA, Asian Institute of Technology-AlT, and the WorldFish Center). The participants discussed the genetic and ecological risks of introducing improved breeds, as well as the methods and capacity of member countries in risk assessment. They also reviewed risk management and mitigation measures, the existing policy instruments, and gaps in their implementation. Then they formulated recommendations and drew up mechanisms to address the gaps in risk assessment and management, and the policy environment. The following is a summary of recommendations from the expert consultation:

- **Policies.** Relevant national and international instruments and non-binding Codes of Conduct related to introductions be reviewed and strengthened, taking into account national obligations under international instruments and agreements.
- **Effective institutional frameworks, monitoring and enforcement mechanisms related to introductions of improved strains be established at national and local levels as appropriate.**
- **Implementation.** Transparent, objective and practical methodologies be adopted and promoted for the assessment of risks associated with the dissemination of improved strains.
- **Capacity building.** Institutional capacity be strengthened at all levels to implement and enforce policies and regulations pertaining to the introduction and dissemination of improved strains of fish.
- **International cooperative programs be undertaken to improve understanding and address ecological, social and economic issues related to improved strains.**
- **Awareness.** The public and decision-makers be made aware of the benefits and potential risks of improved strains.
- **Networking be promoted among all relevant institutions to address knowledge gaps and inform all stakeholders of issues related to research, use and management of improved strains.**
- **Transboundary movements.** Countries initiate measures to fill policy gaps, and strengthen bilateral frameworks, where necessary, to cover transboundary movements, as provided for in the FAO Code of Conduct on Responsible Fisheries and pursuant Technical Guidelines on Aquaculture.

The main recommendations of the meeting will be published as a separate document, “Dhaka Declaration on Ecological Risk Assessment of Genetically Improved Fish.”
Advanced course on quantitative genetics for INGA member country scientists

The WorldFish Center/INGA, with financial support from the Norwegian Agency for Development Cooperation (NORAD), is organizing a two-week training course on Quantitative Genetics and its Application to Aquaculture during 20-31 October 2003 in Penang, Malaysia. The objective is to strengthen the capacity of developing country scientists in the field of quantitative genetics, especially in the analysis and interpretation of genetic data. The course will bring together scientists from INGA member countries involved in the planning, design and implementation of genetic improvement programs for aquaculture species, expose them to high caliber lectures on the subject and teach them how to find solutions to problems in fish breeding and data analysis. The training program will comprise lectures and practical exercises with an emphasis on hands-on analysis of actual breeding/genetic datasets. The course curriculum will cover the following topics: (i) general overview of the design and implementation of genetic improvement programs; (ii) strain choices and comparisons; (iii) estimation of phenotypic and genetic parameters (heritability, phenotypic and genetic correlations); (iv) breeding objectives and selection indices; (v) estimation of breeding values; (vi) incorporating DNA fingerprinting into selection schemes; (vii) mate allocation strategies in genetic improvement programs; (viii) importance of population size in selection programs; (ix) estimating genetic change; and (x) potential of biomolecular techniques in fish breeding.

INGA expands membership

The GIFT Foundation International Inc., Philippines, Asian Institute of Technology (AIT), Thailand, and University of Western Australia, Australia, have recently been admitted as Associate Members of INGA. With their expertise in the practical aspects of fish breeding and genetics research, they will make a valuable contribution to achieving the objectives of the network. To date, INGA has 13 developing countries as Members and 12 advanced scientific institutions, 1 private sector institution, and 3 regional and international organizations as Associate Members.

Workshop on public-private partnerships for the delivery of Tilapia genetic research outputs to Philippines farmers

Through the financial support of the International Development Research Centre (IDRC) of Canada, the WorldFish Center and Philippines institutions comprising the partners of the Tilapia Science Center (i.e., Freshwater Aquaculture Center, College of Fisheries and Phil-Fishgen of the Central Luzon State University; the National Freshwater Fisheries Technology Center, Bureau of Fisheries and Aquatic Resources of the Department of Agriculture; and the GIFT Foundation International, Inc.) are conducting research to evaluate the evolving public-private partnerships and determine their effects on the sustainability and achievement of development objectives in fish genetics research.

A workshop held in Angeles City, Philippines, during 25-27 June 2003, reviewed public-private partnerships in disseminating tilapia genetics research outputs to end-users and formulated recommendations that have policy implications. Thirty-seven participants representing various stakeholder groups (i.e., national aquatic research systems-NARS, international organizations, advanced scientific institutions, the private sector, hatchery operators, and farmers) participated in the workshop. The participants discussed and evaluated the effectiveness and efficiency of various systems for the distribution and dissemination of improved tilapia breeds; and analyzed issues, problems and constraints for the delivery and uptake of genetics-based technologies and their outputs that need to be addressed. Based on the deliberations, the participants came up with recommendations that will be published as a formal document titled “Angeles Declaration: Public-Private Partnerships for Dissemination of Tilapia Genetic Research Outputs to End-Users.”
Development of strategy for dissemination of improved Rohu in India

The Expert Consultation on the dissemination of improved strains of fish organized by INGA in Bangkok, Thailand, in June 2002 recognized the need for national plans and strategies for the effective dissemination of improved strains of fish to target beneficiaries without losing the genetic gains. The Central Institute of Freshwater Aquaculture (CIFA), India, in collaboration with the Institute of Aquaculture Research (AKVAFO RSK), Norway, has undertaken research for the genetic improvement of Rohu (Labeo rohita), resulting in improvement in average growth of 17 per cent per generation after three generations of selective breeding and initiated dissemination through selected hatcheries. As part of the INGA’s strategy to assist member countries in effective dissemination of improved fish strains of fish, a mission comprising of INGA Research Coordinator Dr Modadugu Gupta and Dr Raul Ponzoni of the WorldFish Center, Mr Basilio Rodriguez, Jr. of the GIFT Foundation International and Dr P.V.G.K. Reddy, a well known geneticist and retired Principal Scientist of CIFA, was held in July 2003 to assist CIFA in developing a plan for disseminating the improved strain throughout the country. The mission held discussions with the Director and scientists of CIFA and extension officers, visited hatcheries in Andhra Pradesh, and reported to CIFA their suggestions and plans for the sustainable dissemination of the improved rohu strain.

NTAFP news

Mr Debashish Mazumder, a doctoral student at the Australian Catholic University, New South Wales, Australia, has won the 2002 New South Wales Fisheries’ John Holliday Student Conservation Award for his research on the impact of saltmarshes on fisheries in Southeast Australia. The award program, in memory of the late Dr John Holliday who dedicated 26 years to working for New South Wales Fisheries, aims to encourage post-graduate students to share their research findings on topics of interest to the department.

Mr Mazumdar’s research shows that saltmarshes may be very important as a temporary habitat and as a food source, despite being infrequently inundated with salt water. His data indicate that the number of fish and fish species in saltmarshes are only slightly lower than in mangrove areas. The crabs that live in saltmarshes produce a very large number of offspring, especially in winter, and these are exported out of the saltmarsh areas at high tide. Many fish species, including commercially important flat-tailed mullets, feed predominantly on crab larvae.

Mr Mazumdar’s report was judged as being based on sound science and containing information relevant to managing and protecting saltmarsh areas in Australia.

Indian scientist receives award in marine fisheries

The Indian Council of Agricultural Research (ICAR) conferred the prestigious Rafi Ahmed Kidwai Memorial Award for the biennium 2001-2002 in the area of marine fisheries to Dr V. Srimachandra Murty, formerly the Head, Division of Demersal Fisheries, Central Marine Fisheries Research Institute, Cochin, India. ICAR instituted this award in 1956 to perpetuate the memory of Shri Rafi Ahmed Kidwai who was the President of the ICAR from 1952 to 1954 and “to create an incentive for research workers in India and to recognize outstanding research work done in the fields of agriculture, animal husbandry and allied sciences.”

Dr Murty was recognized for nearly four-decades of pioneering research in fisheries biology, population dynamics and stock assessment of several groups of marine fish. The work has contributed significantly to marine fisheries development and management of exploited demersal fish resources in India, besides providing valuable references for scientists involved in marine fisheries research.

Dr Murty was also cited for his pioneering research on the assessment of marine ornamental fish resources of Lakshadweep. His contributions are of immense value in resource management and will help policy planners to devise and implement sustainable fisheries management policies relevant to the Indian situation.
An estimated 24,000 participants gathered in Kyoto, Shiga and Osaka for the third World Water Forum (WWF) during 16-23 March 2003. Building on the achievements of the first Forum held in Morocco in 1997 and the World Water Forum 2 in The Hague in 2000, the Kyoto Forum provided an opportunity for the world’s water community to debate and exchange information on recent developments and emerging issues concerning the management of the world’s freshwater. While the W W F 2 launched the World Water Vision in 2000, Kyoto provided an opportunity to assess the progress towards turning the vision into reality.

The Forum consisted of over 351 working sessions covering 33 themes and issues, such as: water and poverty, governance, climate, cities; water, food and the environment; and water, nature and the environment. It brought together water users, managers, researchers, NGOs, Ministers, CEOs, and youth from across the globe. The Forum allowed discussion on a remarkably rich diversity of current issues and initiatives at multiple levels in different parts of the world. Following the Forum, a Ministerial meeting resulted in a Ministerial Declaration that is available at www.world.water-forum3.com, together with the Forum’s final Statement. The Declaration and Statement highlight the importance of governance, capacity-building, finance, water resources management and benefit sharing, drinking water and sanitation, water for food and rural development, water pollution prevention and ecosystem conservation, and disaster mitigation and risk management. They emphasize the importance being given to these issues in the current debates on water at the national and international levels.

In providing a forum, Kyoto was clearly a success. But as with most major conferences, many people will ask - what difference has Kyoto made to the lives of the poor people dependent upon freshwater? Kyoto certainly provided an important opportunity for discussion on concerns and for exchanging information — but will this help improve water management? By itself the Forum will not bring about change. The more important question is whether the international community will build upon Kyoto to develop new approaches to addressing the challenges and conflicts identified there. For those of us concerned with fisheries and aquaculture this raises the question of how we can build upon Kyoto to foster action to address our concerns.

At first glance, the discussions at Kyoto were not encouraging for fisheries. Fish, fisheries and aquaculture were all largely absent from the technical debates. In sessions on water and food, and the environment and water, no papers on fish were presented and the fisheries community was very much in the minority in the discussions. However, in retrospect this is not surprising. How often do we discuss aquaculture development or fishery management in terms of water management, or how fisheries and aquaculture can improve water productivity? And when we do so — how effectively do we engage with the water management and research community? One of the messages from Kyoto is that the fisheries managers and researchers need to engage much more effectively with our colleagues concerned with water management in order to understand their perspectives and concerns, and learn how fisheries and aquaculture can relate to these.

In contrast, the Ministerial Declaration gives a high profile to fish declaring that “Inland fisheries being a major source of food, freshwater fish production should be addressed through intensified efforts to improve water quality and quantity in rivers and protection or restoration of breeding areas.” Interestingly, this was achieved as a result of the recommendations from the Second International Symposium on the Management of Large Rivers for Fisheries (held in Phnom Penh in February 2003) and the efforts of the Mekong River Commission (MRC) to promote wider awareness of these recommendations at Kyoto. Greater investment of this kind will do much to raise the profile of fisheries issues in these policy debates.

The central message from Kyoto is that the policy debate and technical discussions that are taking place around water are of central importance to fish and fisheries and, hence, there is an urgent need for much greater investment by the fisheries and aquaculture community to engage in these processes. As the international community seeks to identify ways by which to improve water productivity through more integrated approaches to water use, it will become increasingly important to understand and promote how best to integrate fisheries and aquaculture. Amongst the research areas where special attention is merited, four stand out: Integrating fish into farm and water management. A wide range of opportunities exists for improving water productivity by integrating fish production into farming and water management systems. Practical technologies for doing so need to be developed through participatory research and development approaches.

Ecosystems services. As the water community moves from defining water productivity in terms of more crop per drop to embracing a wider understanding of the role of water in supporting livelihoods at the basin level, more attention needs to be given to assessing ecosystem services and resource values that are sustained by water.

Environmental flows. If these values are to be sustained in the face of increasing competition for water, there is an urgent need to develop user-friendly methodologies for environmental flow assessment and build capacity to use these.

Governance. Work on all of these issues needs to be underpinned by a fundamental assessment of how aquatic resources and farming systems are governed and how the benefits are shared amongst stakeholders. In the absence of governance systems that foster improved engagement of fishers and farmers in water resource management decisions and improve benefit sharing, new technologies will be of little value.

The WorldFish Center is currently engaged in several initiatives that will help foster this work:

Fish for All has recognized water as a major priority and is building awareness of the importance of fish, fisheries and aquaculture in water management.

The Comprehensive Assessment of Water in Agriculture is supporting a number of projects to assess the current understanding of the contribution of fish and fisheries to agricultural productivity and highlighting future research needs.

The Challenge Program on Water and Food has given high priority to Aquatic Ecosystems and Fisheries as one of five central themes of the program. WorldFish will coordinate activities under this theme on behalf of the Challenge Program.

By pursuing these initiatives over the course of the next few years and working to develop a closer partnership with the water management and research communities, WorldFish hopes to see a much higher profile for fish at the next W W F in 2006 and greater tangible benefits to fishers and farmers from improved water management.

P. Dugan is from the WorldFish Center’s Regional Research Center for Africa and West Asia, PO Box 1261, Maadi, Cairo, Egypt. E-mail: worldfish-egypt@cgiar.org

P. Dugan is from the WorldFish Center’s Regional Research Center for Africa and West Asia, PO Box 1261, Maadi, Cairo, Egypt. E-mail: worldfish-egypt@cgiar.org
The WorldFish Center is pleased to announce that **Prof Dr Aprilani Soegiarto**, a former Board Member of the WorldFish Center (1997-2003), was awarded a Silver Medal from the Wageningen University and Research Center, Wageningen, the Netherlands. The award was bestowed on him as the Chair of the Board of Trustees of the PROSEA (Plant Resources of Southeast Asia) Foundation during 1989-2003. More than 1 200 experts from all over the world are involved in PROSEA. Dr Aprilani helped to complete the 24-volume PROSEA Handbook in a successful joint venture between Wageningen University and six scientific institutions in Southeast Asia. The realization of the basic mission of PROSEA, i.e., the publication of a 24-volume Handbook on 7 000 species of useful plants of Southeast Asia over a time-span of 16 years, is a formidable achievement. Congratulations on the hard work and rewarding experience.

Dr Aprilani Soegiarto earned his Ph.D. in Marine Science from the University of Hawaii. He is an internationally recognized marine biologist, and has served as the fourth Vice Chair of the International Governmental Oceanographic Commission of UNESCO (1987-1990) and chair of the Association of the Southeast Asian Nations (ASEAN) Subcommittee on Marine Sciences (1984-1992). Later in his career he became involved in research management at the Indonesian Institute of Sciences (LIPI) in Jakarta, Indonesia.

He holds three concurrent positions: Research Professor at the Center for Research and Development in Oceanology; Professor in Oceanology at the Bogor Agriculture University; and Chairman, Group II Natural Resources and Energy of the Indonesian National Research Council.

New publication

Fish to 2020 - Supply and Demand in Changing Global Markets

by Christopher L. Delgado, Nikolas Wada, Mark W. Rosegrant, Siet Meijer, and Mahfuzuddin Ahmed

Growing crises and controversy are plaguing the fish industry worldwide. With more people consuming more fish than ever before, the world's oceans are being overfished and fish farming is threatening surrounding waters and even wild fish stocks. Given this troubling picture, can an environmentally sustainable fish industry that also serves poor people be developed over the next two decades? To address this question, Fish to 2020 presents the first comprehensive economic analysis of recent rapid changes in the fish sector and gives the outlook for fish in the global food system over the next two decades.

Using a state-of-the-art model of the world food system, Fish to 2020 examines the pressing problems of fisheries in the context of changing global and national market forces. It reveals that developing countries will shape nearly all growth in the fish industry in the next two decades and describes how new technologies and improved policies in both developed and developing countries can help create a thriving sustainable fish industry. This book is essential for anyone who wishes to understand the future of the world food system and the crucial role that fish can play. Highlights of the book are available in a food policy report and a brief.

To order, please contact: worldfish-publications@cgiar.org

Or write to:
The Communications Unit
PO. Box 500 GPO 10670, Penang, Malaysia
Tel: (+60-4) 626 1606
Fax: (+60-4) 626 5530
Obituary: Professor Dr Guy Teugels, scholar, partner and friend

Professor Dr Guy Teugels, Senior Scientist and Curator of the Ichthyology Collection of the Royal Museum for Central Africa (Musée Royal de l’Afrique Centrale, MRAC) in Tervuren, Belgium, and Professor at the Catholic University of Louvain, passed away on 22nd July 2003 at the height of his career and at the relatively young age of 48 years. He was a member of the Network of Aquaculture and Fisheries Professionals (NTAFP), council member of the Asian Fisheries Society (AFS) and a close friend of the WorldFish Center. He had a distinguished career at the Universiti Sains Malaysia, which he joined as a lecturer in the School of Biological Sciences in April 1984. He was promoted to Associate Professor in 1990 and to full Professor in 1998. His research on limnology was particularly well recognized and he was the Chairperson for the Limnological Research Group on Paya Indah Sanctuary, Malaysian Wetlands Foundation during 1997-98. He chaired the Advisory Committee of the Ramsar Center, Japan from 1997 until his demise, and also chaired the training program on the “Rice-Macrobrachium Integrated Farming System” initiated by DFID-UK and CARE Bangladesh in 1998. He was awarded the Biwako Ecology Prize (Japan) in 2001, and was appointed Deputy Vice Chancellor (Research and Development) of Universiti Sains Malaysia in October 2001. Despite his illness, he valiantly shouldered his heavy workload. He was a good friend and partner to the WorldFish Center and shared many of its visions and missions. He left behind his wife, N or Aaini Haji Ismail, and four children. With his untimely demise, the world of aquaculture and fisheries has lost an eminent scientist.

Obituary: Professor Dr Ahyaudin Ali

Professor Ahyaudin Ali, Deputy Vice Chancellor (Research and Development) of Universiti Sains Malaysia, passed away on 5 July 2003 at the age of 64 years old.

Prominent environmentalist Prof Surapol Sudara died on 19 July 2003 after being diagnosed with liver cancer in June. He was 64 years old.

Prof Surapol was an adviser to the Ministry of Natural Resources and Environment, Praphat Panyachartrak, as well as the House Committee on foreign affairs in Thailand. He specialized in marine biology and coastal-area management. Mr Praphat noted that Prof Surapol was a well-respected environmental expert who played an important role in founding the Ministry of Natural Resources and Environment. “Prof Surapol was a key adviser to the Ministry, especially on the government’s policy for marine and coastal management,” he said. “His death is a great loss to the nation’s environmental movements.”

Prof Surapol retired as lecturer at the Department of Marine Science in 1999. He became president of the Sueb Nakhasathien Foundation, one of Thailand’s most active environmental NGOs, in September 2001. “Prof Surapol was a pioneer in raising public awareness on the degradation of marine and coastal resources,” said Sueb Nakhasathien Foundation President Vanchai Tantivitayapitak. “His work alerted state agencies and the public to threats to marine and coastal ecological systems.”

Prof Surapol had worked toward promoting environmental conservation for more than three decades. He was a key opponent of the Nam Chon dam project in Kanchanaburi and had recently warned the government to scrap a proposed potash mine in Udonthani Province due to the potential for severe environmental consequences. He was also concerned about the impact of mass tourism on coral reefs and other aspects of marine ecology.

Before his death, Prof Surapol chaired a subcommittee working on the restructuring of EIAs in Thailand. Environment Institute President, Dr Thongchai Paisawad said Prof Surapol’s attempts to protect Thailand’s natural resources had been hampered by state agencies that were more interested in economic development.

Prof Surapol was married to Taveetiya Sukharom and had three children.

Obituary: Professor Surapol Sudara, leading marine conservationist in Thailand

Thirty years pushing marine conservation

Prominent environmentalist Prof Surapol Sudara died on 19 July 2003 after being diagnosed with liver cancer in June. He was 64 years old.

Prof Surapol was an adviser to the Natural Resources and Environment Minister, Praphat Panyachartrak, as well as the House Committee on foreign affairs in Thailand. He specialized in marine biology and coastal-area management. Mr Praphat noted that Prof Surapol was a well-respected environmental expert who played an important role in founding the Ministry of Natural Resources and Environment. “Prof Surapol was a key adviser to the Ministry, especially on the government’s policy for marine and coastal management,” he said. “His death is a great loss to the nation’s environmental movements.”

Prof Surapol retired as lecturer at the Department of Marine Science in 1999. He became president of the Sueb Nakhasathien Foundation, one of Thailand’s most active environmental NGOs, in September 2001. “Prof Surapol was a pioneer in raising public awareness on the degradation of marine and coastal resources,” said Sueb Nakhasathien Foundation President Vanchai Tantivitayapitak. “His work alerted state agencies and the public to threats to marine and coastal ecological systems.”

Prof Surapol had worked toward promoting environmental conservation for more than three decades. He was a key opponent of the Nam Chon dam project in Kanchanaburi and had recently warned the government to scrap a proposed potash mine in Udonthani Province due to the potential for severe environmental consequences. He was also concerned about the impact of mass tourism on coral reefs and other aspects of marine ecology.

Before his death, Prof Surapol chaired a subcommittee working on the restructuring of EIAs in Thailand. Environment Institute President, Dr Thongchai Paisawad said Prof Surapol’s attempts to protect Thailand’s natural resources had been hampered by state agencies that were more interested in economic development.

Prof Surapol was married to Taveetiya Sukharom and had three children.

NAGA, WorldFish Center Quarterly Vol. 26 No. 3 Jul-Sep 2003 41
Bibliography

19452 - The role of aquaculture and living aquatic resources: priorities for support and networking. 2003. Bangkok, Thailand. Food and Agriculture Organization (the United Nations FAO), the Mekong River Commission (MRC), the Network of Aquaculture Centres in Asia-Pacific (NACA), the Southeast Asian Fisheries Development Center (SEAFDEC) and the WorldFish Center Regional Donor Consultation on the "Role of aquaculture and living aquatic resources: priorities for support and networking" convened in Manila, Philippines, 27-28 November 2002. SH151 R64 2002.

19455 - Role of chromatophores and plesiotypic growth and carbohydrate utilization in tilapia, O. niloticus x O. aureus. Qing Pan; Sheng Liu; Ying Gu; BY. 2003. A aquaculture 225:1-4; 421-429. Department of Aquaculture, School of Animal Science, South China Agricultural University, Canton 510642, PR China.

19562 - Improving developing country food security through aquaculture development - lessons from Asia. Ahmad, M.; Lorica, M.H. 2002. Food Policy 27:125-141. W rite to: WorldFish Center, PO Box 500, GPO, 10670 Penang, Malaysia (Email: info@worldfishcenter.org) R 2002-37.

19563 - Towards food secure India: proceedings of the 88th session of the Indian Science Congress. Paroda, R.S.;

19707 - International trade in aquaculture products. China. Chen, S. 2002. IN FO FISH Int. (1): 20-24. IN FOYU, Room 203, Building 18, Maizidian Street, Chaoyang Branch, Beijing 100026, P.R. China. (E-mail: info@gy.agri.gov.cn).

19713 - FAO aquaculture activities: an example from Viet Nam. van A Droopy, R.; Evans, B. 2002. IN FO FISH Int. (1): 47-47. FAO representation, Hanoi, Viet Nam. (E-mail: FAO - VN M @ fao.org).

19723 - Fiji, Food and Agriculture Organization of the United Nations, Viale delle Terme di Praeneste, 00153 Rome, Italy. 100026, P. R. China.

19725 - Regional guidelines for responsible fisheries in Southeast Asia: responsible fishing operations. (Kuala Terengganu, Malaysia); (Marine Fisheries Research and Development and Management Department] 69 p. 974-537-297-8. (Kuala Terengganu, Malaysia). E-mail: Felix.Marttin @ fao.org.

from water to table. This includes interaction between the water environment and productivity and variation of the fish stocks, methods for assessment of the sizes of fish stocks, development of methods for sustainable fisheries management, and stock enhancement.

Danish Network for Fisheries and Aquaculture Research
http://www.fishnet.dk/home/index.html

A network of Danish fisheries and aquaculture scientists. It coordinates the activities within five research networks: Fisheries and Aquaculture Management and Economics FAME, Fish Physiology, Biochemistry and Food (FIBF), Maritime History and Marine Environmental Research School (MARINES), Sustainable Control of Fish Diseases in Aquaculture (SCOFDA), Fisheries biology and modelling, and Scaling from Individual to Population (SLIP). These networks contain a number of research projects and each network has an associated research school.

The eSeFDee Marine Sciences Portal
http://www.fishnet.dk/home/index.html

The eSeFDee Marine Sciences Portal for the North Atlantic and the Mediterranean is the continuation of the former links pages of the Sea Fisheries Department (LCO-SFD), Ostend, Belgium. The portal site is offered as a free service to the marine scientific community, to managers and decision makers, and in general to anyone interested in the North Atlantic and the Mediterranean.

The Fish Nutrition Research Lab
http://www.uoguelph.ca/fishnutrition/index.html

The Fish Nutrition Research Lab of the University of Guelph conducts basic and applied research in the field of fish nutrition and feeding with particular emphasis on bioenergetics, digestibility, nutrient requirements, feed formulation/evaluation, feeding systems and waste management.

Fishdisease.net
http://www.fishdiseases.net/

A web community for aquatic animal health professionals. It provides links to user directory, upcoming conferences, aquatic disease related professional societies, journals or other publications, university or similar courses, and jobs.

Improved Assessments and Management of Shrimp Stocks Could Benefit Sea Turtle Populations, Shrimp Stocks and Shrimp Fisheries
http://www.seaturtle.org/mtn/archives/mtn100/mtn100p22.shtml

An article by C.W. Callouet, Jr., extracted from Marine Turtle Newsletter, 100: 22-27, 2003. The focus of this paper is on overfishing and the apparent flaws in shrimp stock assessments that have contributed to it.

The Institute of Aquaculture
http://www.aqua.stir.ac.uk/index.htm

An international research and post-graduate training centre, core-funded by the University of Stirling. It also receives research and project funding from the Department for International Development, the European Commission and from a wide variety of national and international research organizations, foundations and trusts and industry. The Institute has links with many other academic institutions, not only in Europe, but also with the Asian Institute of Technology and the Aquatic Animal Health Research Institute, Bangkok, Thailand, the Bangladesh Agricultural University, Mymensingh, the College of Fisheries, Mangalore, India, the Centre for Aquaculture and Environmental Management in Mexico and Myazaki University, Japan.

Integrated Water-Resources Management in a River-Basin Context
http://www.wri.org/pubs/Proceedings/Malang/index.htm

Proceedings of the regional workshop held in Malang, Indonesia, 15-19 January, 2001. It consists of the following - introduction:

- Part 1: Five-Country Regional Study- Framework and Comparative Analysis
- Part 2: Five-Country Regional Study-Country Cases

The Japan Sea-Farming Association
http://www.jafa.or.jp/english/en_index.html

The association is an alliance of the country's 39 prefectures having seaweed areas within their borders and their respective fishery cooperative associations. It is a national-level organization for sea farming.

Journal of Health and Population in Developing Countries
http://www.jhpcd.unc.edu/

A semi-annual publication of the School of Public Health, Department of Health Policy and Administration, University of North Carolina. It is an interdisciplinary journal devoted to policy and management issues in health and population fields in developing countries.

Malaysia Nature Society (MNS)
http://www.mns.org.my/

Established in 1940, the MNS is the oldest scientific and non-government organization in Malaysia dedicated to nature conservation. It aims to promote the study, appreciation, conservation and protection of Malaysia's natural heritage, focusing on biological diversity and sustainable development.

Marine Parasitic Crustacea CD-ROM
http://www.malabc.can/araparcet/

This CD-ROM utilizes the latest in multimedia technology. It focuses on the biology of representative parasitic crustaceans of invertebrates and fish of coastal marine waters of British Columbia, Canada, including the parasitic Coepodida, Cirripedia, Isopoda and Amphipoda.

PovertyNet Newsletter

A monthly newsletter that contains updates on new information and resources available on the PovertyNet web site, covering poverty reduction strategies, the World Bank's World Development Report (WDR) on poverty and development, poverty monitoring and evaluation, the impact of growth and inequality on poverty, the role of human capital development in the fight against poverty, safety nets and social capital.

Resource Utilization
http://www.eastthailand.org/map/tfrn.htm

The website of the Mangrove Action Project (MAP). It contains articles on earth resources, resource management, and other news updates.

The Sea Fish Industry Authority (Seafish)
http://www.seafood.ie/index.asp

Seafish works across all sectors of the UK seafood industry to promote good quality, sustainable seafood. Their research and projects are aimed at raising standards, improving efficiency and ensuring that the industry develops in a viable way.

Seaweed Site
http://seaweed.ucp.ie/defaultmonday.html

This website has a lot of information on all aspects of seaweed and marine algal biology.

Smithsonian Institution Marine Science
http://www.si.edu/marine/science

Marine Science at the Smithsonian Institution is uniquely positioned to study the patterns and mechanisms of change in ocean environments and is a major force in the effort to conserve key coastal resources. It operates a unique network of coastal laboratories and long-term marine research sites in the western Atlantic Ocean that extends along the east coast of North and Central America, bridging the Panamanian Isthmus from the Caribbean Sea to the Pacific Ocean.

The Stock Enhancement and Sea Ranching Homepage
http://www.efan.no/was/

The website aims to increase awareness about stock enhancement and sea ranching by highlighting programs and groups that are working in this field, focusing on various successes around the world, pointing to networks of researchers and focus groups, informing about symposia, meetings, and publications in the field, and providing a discussion forum on all aspects of hatchery releases into aquatic environments.

Voices of the Poor Reports
http://www.worldbank.org/poverty/voices/reports.htm

Voices of the Poor consist of three books, which bring together the experiences of over 60,000 poor women and men. The first book, Can Anyone Hear Us?, gathers the voices of over 40,000 women and men in 50 countries from the World Bank's participatory poverty assessments; the second book, Crying Out for Change, draws material from a new 23 country comparative study. The final book, From Many Lands, offers regional patterns and country case studies.
Guidelines for Authors

The purpose of these guidelines is to assist NAGA contributors in the preparation of articles for submission to NAGA, WorldFish Center Quarterly. The presentation of your manuscript is the critical first stage in the successful publication of your article and the instructions below will assist you in ensuring that your article is reviewed and published as efficiently as possible.

If you can prepare your article on a computer it will enable us to work more quickly and easily. However, if you do not have access to a computer, hard copies of your manuscript should be submitted to: The Editor, NAGA, Communications Unit, WorldFish Center, PO Box 500 GPO, 10670 Penang, Malaysia. E-mail: naga@cgiar.org

Manuscript
Please ensure that the manuscript is clear enough to work on, and adheres to the following:
- Paper size: A4
- Font size: 12 points
- Your text should be double-spaced with a 2.5 cm margin all around.
- Your manuscript must be paginated.
- Articles submitted should be between 1 500-2 000 words.
- Include an abstract in approximately 50 words, stating what was done, found and concluded.
- Submit one hard copy; and one soft copy and keep one copy for reference.
- The electronic/soft copy should be in Microsoft Word for Windows. The soft copy must be an exact printout of the hard copy. The soft copy should be sent by e-mail to: naga@cgiar.org. If you do not have access to e-mail, send the soft copy in a 3 ½ inch disk to the WorldFish Center.
- The hard copy should only be printed on one side and sent to WorldFish.

House style
- Spelling should conform to the new edition of the Concise Oxford English Dictionary. Alternatives will be accepted provided they are consistent.
- Use Italic for scientific names, and words/phrases in foreign languages.
- To check all fish species names, refer to FishBase at www.fishbase.org.
- Justification of text – the text should be left justified. Do not use hyphenation except for hyphenated words.
- Headings – where there are several levels of heading, each one should be differentiated from the other as below: Title of article – (Upper and Lower Case, Bold, 14 pts, Centered)
 Headings – Level One (Upper and Lower Case, Bold, 12 pts, Centered)
 Headings – Level Two (Upper and Lower Case, Bold, 11 pts, Flush Left)
 Headings – Level Three (Upper and Lower Case, Bold, 10 pts, Flush Left)
 Headings – Level Four (Upper and Lower Case, Italics, 10 pts, Flush Left)
- Space after punctuation marks – use single (and not double) space after full stops, commas, colons, semicolons, etc.
- Quotation marks – use double quotation marks for dialogue and quoted material. Single quotation marks are used only for quote within quotes.
- Units of measure – The International System of Units (SI) is recommended.
- Numerals – spell out numerals smaller than 10, e.g. eight fish. However numerals smaller than 10 should not be spelled out when accompanied by a standard unit of measure, e.g. 3 kg.
- Dates – should be written as ‘day month year’, e.g. 8 May 2001.
- Abbreviations – Any word or words to be abbreviated should be written in full when first mentioned followed by the abbreviation in parenthesis.

Illustrations
- Illustrations can be photographs, line drawing, maps or graphs. Bear in mind that the quality of printed illustrations is dictated by the quality of the originals you supply;
- Line drawings submitted should be originals, drawn in black ink on white paper. These should be mailed to the WorldFish Center flat or rolled, never folded;
- If drawings are digitally produced, they must be of high quality;
- One color (black) line drawing should be produced at 500-800 dpi and saved as a bitmap tiff file;
- Tone illustrations or illustrations in color should be produced at 250-300 dpi and saved in grayscale as tiff files.
- Maps should include indicators of latitude and longitude.
- Check to ensure that figures are numbered correctly as they are cited in the text. Position figure numbers and headings at the bottom of the illustration.

Tables
- Key in your tables using the Table Menu in Word.
- Ensure that your tables are numbered correctly and that they tally with the numbering cited in your text.
- Position table numbers and headings above the table. The headings should be clear, complete and informative.
- Place sources and notes immediately below the table.

References (examples)
Book

Chapter or part of a book or published conference proceedings:

Journal article:

Notes on authors should be included at the end of the article:
A. Shalesha and V.A. Stanley are scientists at the J.R.D. Tata Ecotechnology Center, M.S. Swaminathan Research Foundation, Chennai – 600 113, India.